Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2018

29-01-2018 | Review

Capacitive gas and vapor sensors using nanomaterials

Authors: P. Bindra, A. Hazra

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An immense number of sensors has been reported in the literature employing various methods for the detection of different gases and vapors. This article summarizes those sensors whose sensing layer is made up of nanostructured materials and a change in capacitance value of device is the key parameter for detecting a gas or vapor. Now-a-days, capacitive sensors are emerging as they consume less power, operate well at room temperature and show decent response and recovery time. The sensing principles, configurations, mechanisms and performances of capacitive sensors based on different nanostructures are summarized and discussed in the current article. Emerging carbon based nanomaterials like carbon nanotube and graphene are also highlighted for capacitive mode detection of gases and vapors. Finally, an outlook of primary challenges in this field are identified and discussed at the end of the review.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017)CrossRef R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017)CrossRef
2.
go back to reference A. Hazra, S.K. Hazra, E. Bontempi, V.N. Lakshmi, S. Sinha, C.K. Sarkar, S. Basu, Anodically grown nanocrystalline titania thin film for hydrogen gas sensors—a comparative study of planar and MAIM device configurations. Sens. Actuators B 188, 787–796 (2013)CrossRef A. Hazra, S.K. Hazra, E. Bontempi, V.N. Lakshmi, S. Sinha, C.K. Sarkar, S. Basu, Anodically grown nanocrystalline titania thin film for hydrogen gas sensors—a comparative study of planar and MAIM device configurations. Sens. Actuators B 188, 787–796 (2013)CrossRef
3.
go back to reference M.N. Kavalenka, C.C. Striemer, J.S. DesOrmeaux, J.L. McGrath, P.M. Fauchet, Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sens. Actuators B 162, 22–26 (2012)CrossRef M.N. Kavalenka, C.C. Striemer, J.S. DesOrmeaux, J.L. McGrath, P.M. Fauchet, Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sens. Actuators B 162, 22–26 (2012)CrossRef
4.
go back to reference S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Chemicapacitive microsensors for volatile organic compound detection. Sens. Actuators B 96, 541 (2003)CrossRef S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Chemicapacitive microsensors for volatile organic compound detection. Sens. Actuators B 96, 541 (2003)CrossRef
5.
go back to reference S. Satyanarayana, D.T. McCormick, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators B 115, 494 (2006)CrossRef S. Satyanarayana, D.T. McCormick, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators B 115, 494 (2006)CrossRef
6.
go back to reference J.D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, T.L. Ferrell, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array. Appl. Phys. Lett. 83, 3428 (2003)CrossRef J.D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, T.L. Ferrell, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array. Appl. Phys. Lett. 83, 3428 (2003)CrossRef
7.
go back to reference K.K. Park, H.J. Lee, G.G. Yaralioglu, A.S. Ergun, O. Oralkan, M. Kupnik, C.F. Quate, B.T. Khuri-Yakub, T. Braun, J.-P. Ramseyer, H.P. Lang, M. Hegner, C. Gerber, J.K. Gimzewski, Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl. Phys. Lett. 91, 094102 (2007)CrossRef K.K. Park, H.J. Lee, G.G. Yaralioglu, A.S. Ergun, O. Oralkan, M. Kupnik, C.F. Quate, B.T. Khuri-Yakub, T. Braun, J.-P. Ramseyer, H.P. Lang, M. Hegner, C. Gerber, J.K. Gimzewski, Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl. Phys. Lett. 91, 094102 (2007)CrossRef
8.
go back to reference H. Taghinejad, M. Taghinejad, M. Abdolahad, A. Saeidi, S. Mohajerzadeh, Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B 176, 413–419 (2013)CrossRef H. Taghinejad, M. Taghinejad, M. Abdolahad, A. Saeidi, S. Mohajerzadeh, Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B 176, 413–419 (2013)CrossRef
9.
go back to reference A.M. Kummer, A. Hierlemann, H. Baltes, Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal. Chem. 76, 2470 (2004)CrossRef A.M. Kummer, A. Hierlemann, H. Baltes, Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal. Chem. 76, 2470 (2004)CrossRef
10.
go back to reference R. Igreja, C.J. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A 112, 291–301 (2004)CrossRef R. Igreja, C.J. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A 112, 291–301 (2004)CrossRef
11.
go back to reference M. Babaei, N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B 183, 617–626 (2013)CrossRef M. Babaei, N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B 183, 617–626 (2013)CrossRef
12.
go back to reference Y. Chen, F. Meng, M. Li, J. Liu, Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sens. Actuators B 140, 396–401 (2009)CrossRef Y. Chen, F. Meng, M. Li, J. Liu, Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sens. Actuators B 140, 396–401 (2009)CrossRef
13.
go back to reference J.A. Robinson, E.S. Snow, F.K. Perkins, Improved chemical detection using single walled carbon nanotube network capacitors. Sens. Actuators A 135, 309–314 (2007)CrossRef J.A. Robinson, E.S. Snow, F.K. Perkins, Improved chemical detection using single walled carbon nanotube network capacitors. Sens. Actuators A 135, 309–314 (2007)CrossRef
14.
go back to reference N.L. Teradal, S. Marx, A. Moraga, R. Jelinek, Porous graphene oxide chemi-capacitor vapor sensor array. J. Mater. Chem. C 5, 1128–1135 (2017)CrossRef N.L. Teradal, S. Marx, A. Moraga, R. Jelinek, Porous graphene oxide chemi-capacitor vapor sensor array. J. Mater. Chem. C 5, 1128–1135 (2017)CrossRef
15.
go back to reference N.M. Kiasari, S. Soltanian, B. Gholamkhass, P. Servati, Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators A 182, 101–105 (2012)CrossRef N.M. Kiasari, S. Soltanian, B. Gholamkhass, P. Servati, Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators A 182, 101–105 (2012)CrossRef
16.
go back to reference D. Jung, M. Han, G.S. Lee, Humidity-sensing characteristics of multi-walled carbon nanotube sheet. Mater. Lett. 122, 281–284 (2014)CrossRef D. Jung, M. Han, G.S. Lee, Humidity-sensing characteristics of multi-walled carbon nanotube sheet. Mater. Lett. 122, 281–284 (2014)CrossRef
17.
go back to reference Y. Wu, T. Zhang, Y. Rao, Y. Gong, Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B 155, 258–263 (2011)CrossRef Y. Wu, T. Zhang, Y. Rao, Y. Gong, Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B 155, 258–263 (2011)CrossRef
18.
go back to reference Y. Li, M.J. Yang, Y. She, Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites. Talanta 62, 707–712 (2004)CrossRef Y. Li, M.J. Yang, Y. She, Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites. Talanta 62, 707–712 (2004)CrossRef
19.
go back to reference I. Venditti, I. Fratoddi, A. Bearzotti, Self-assembled copolymeric nanoparticles as chemically interactive materials for humidity sensors. Nanotechnology 21, 355502 (2010)CrossRef I. Venditti, I. Fratoddi, A. Bearzotti, Self-assembled copolymeric nanoparticles as chemically interactive materials for humidity sensors. Nanotechnology 21, 355502 (2010)CrossRef
20.
go back to reference Y. Shen, W. Wang, A. Fan, D. Wei, W. Liu, C. Han, Y. Shen, D. Meng, X. San, Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int. J. Hydrogen Energy 40(45), 15773–15779 (2015)CrossRef Y. Shen, W. Wang, A. Fan, D. Wei, W. Liu, C. Han, Y. Shen, D. Meng, X. San, Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int. J. Hydrogen Energy 40(45), 15773–15779 (2015)CrossRef
21.
go back to reference F. Yavari, N. Koratkar, G.-B.C. Sensors, J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef F. Yavari, N. Koratkar, G.-B.C. Sensors, J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef
22.
go back to reference M.A. Ponce, R. Parra, R. Savu, E. Joanni, P.R. Bueno, M. Cilense, J.A. Varela, M.S. Castro, Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sens. Actuators B 139, 447–452 (2009)CrossRef M.A. Ponce, R. Parra, R. Savu, E. Joanni, P.R. Bueno, M. Cilense, J.A. Varela, M.S. Castro, Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sens. Actuators B 139, 447–452 (2009)CrossRef
23.
go back to reference A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl. Phys. Lett. 105, 081604 (2014)CrossRef A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl. Phys. Lett. 105, 081604 (2014)CrossRef
24.
go back to reference A. Hazra, S. Das, J. Kanungo, C.K. Sarkar, S. Basu, Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87–95 (2013)CrossRef A. Hazra, S. Das, J. Kanungo, C.K. Sarkar, S. Basu, Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87–95 (2013)CrossRef
25.
go back to reference X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens. Actuators B. 177, 178–195 (2013)CrossRef X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens. Actuators B. 177, 178–195 (2013)CrossRef
26.
go back to reference S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. 116, 10586–10591 (2012) S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. 116, 10586–10591 (2012)
27.
go back to reference Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B 93, 327–332 (2003)CrossRef Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B 93, 327–332 (2003)CrossRef
28.
go back to reference A. Hazra, P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483–3489 (2014)CrossRef A. Hazra, P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483–3489 (2014)CrossRef
29.
go back to reference K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens. Actuators B 145, 232–238 (2010)CrossRef K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens. Actuators B 145, 232–238 (2010)CrossRef
30.
go back to reference L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films. 517, 948–951 (2008)CrossRef L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films. 517, 948–951 (2008)CrossRef
31.
go back to reference S. Homayoonnia, S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B 237, 776–786 (2016)CrossRef S. Homayoonnia, S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B 237, 776–786 (2016)CrossRef
32.
go back to reference L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators B 150, 806–810 (2010)CrossRef L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators B 150, 806–810 (2010)CrossRef
33.
go back to reference M.T. Soo, K.Y. Cheong, A.F.M. Noor, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B 151, 39–55 (2010)CrossRef M.T. Soo, K.Y. Cheong, A.F.M. Noor, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B 151, 39–55 (2010)CrossRef
34.
go back to reference J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef
35.
go back to reference T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–888 (2003)CrossRef T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–888 (2003)CrossRef
36.
go back to reference P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRef P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRef
37.
go back to reference T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 19, 332001 (2008)CrossRef T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 19, 332001 (2008)CrossRef
38.
go back to reference J. Yua, H. Wen, M. Shafiei, M.R. Field, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, K. Kalantar-zadeh, P.T. Lai, A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sens. Actuators B 184, 118–129 (2013)CrossRef J. Yua, H. Wen, M. Shafiei, M.R. Field, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, K. Kalantar-zadeh, P.T. Lai, A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sens. Actuators B 184, 118–129 (2013)CrossRef
39.
go back to reference A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)CrossRef A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)CrossRef
40.
go back to reference E.S. Snow, F.K. Perkins, Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5, 2414–2417 (2005)CrossRef E.S. Snow, F.K. Perkins, Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5, 2414–2417 (2005)CrossRef
41.
go back to reference K. Lui, M. Vest, P. Berlowitz, S. Akhter, H.H. Kung, Desorption of Zn from ZnO single-crystal surfaces during temperature programmed decomposition of methanol, formic acid, and 2-propanol. J. Phys. Chem. 90, 3183–3187 (1986)CrossRef K. Lui, M. Vest, P. Berlowitz, S. Akhter, H.H. Kung, Desorption of Zn from ZnO single-crystal surfaces during temperature programmed decomposition of methanol, formic acid, and 2-propanol. J. Phys. Chem. 90, 3183–3187 (1986)CrossRef
42.
go back to reference P.G. Smith, Introduction to Food Process Engineering, (Springer, New York, 2011), 28–34CrossRef P.G. Smith, Introduction to Food Process Engineering, (Springer, New York, 2011), 28–34CrossRef
43.
go back to reference J.M. Castillo, Relative humidity: sensors, management and environmental effects. Nova Sci. Publishers 1–5 (2011) J.M. Castillo, Relative humidity: sensors, management and environmental effects. Nova Sci. Publishers 1–5 (2011)
44.
go back to reference C.L. Zhao, M. Qin, W.H. Li, Q.A. Huang, Enhanced Performance of a CMOS Interdigital Capacitive Humidity Sensor by Graphene Oxide, 16th International Solid-State Sensors (Actuators and Microsystems Conference, Beijing, 2011), pp. 1954–1957 C.L. Zhao, M. Qin, W.H. Li, Q.A. Huang, Enhanced Performance of a CMOS Interdigital Capacitive Humidity Sensor by Graphene Oxide, 16th International Solid-State Sensors (Actuators and Microsystems Conference, Beijing, 2011), pp. 1954–1957
45.
go back to reference M. Rahimabady, C.Y. Tan, S.Y. Tan, S. Chen, L. Zhang, Y.F. Chen, K. Yao, K. Zang, A. Humbert, D. Soccol, M. Bolt, Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B 243, 596–601 (2017)CrossRef M. Rahimabady, C.Y. Tan, S.Y. Tan, S. Chen, L. Zhang, Y.F. Chen, K. Yao, K. Zang, A. Humbert, D. Soccol, M. Bolt, Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B 243, 596–601 (2017)CrossRef
46.
go back to reference T. Ishihara, S. Matsubara, Capacitive type gas sensors. J. Electroceram. 2, 215–228 (1998)CrossRef T. Ishihara, S. Matsubara, Capacitive type gas sensors. J. Electroceram. 2, 215–228 (1998)CrossRef
47.
go back to reference M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)CrossRef M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)CrossRef
48.
go back to reference J.T.W. Yeow, J.P.M. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology. 17, 5441–5448 (2006)CrossRef J.T.W. Yeow, J.P.M. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology. 17, 5441–5448 (2006)CrossRef
49.
go back to reference E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942–1945 (2005)CrossRef E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942–1945 (2005)CrossRef
50.
go back to reference X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123, 461–465 (2007)CrossRef X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123, 461–465 (2007)CrossRef
51.
go back to reference C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B 122, 556–559 (2007)CrossRef C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B 122, 556–559 (2007)CrossRef
52.
go back to reference M. Armgarth, D. Söderberg, I. Lundström, Palladium and platinum gate metal oxide semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 41, 654–655 (1982)CrossRef M. Armgarth, D. Söderberg, I. Lundström, Palladium and platinum gate metal oxide semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 41, 654–655 (1982)CrossRef
53.
go back to reference C. Lu, Z. Chen, MOS hydrogen sensor with very fast response based on ultra-thin thermal SiO2 film. Int. J. Hydrogen Energy. 35, 12561–12567 (2010)CrossRef C. Lu, Z. Chen, MOS hydrogen sensor with very fast response based on ultra-thin thermal SiO2 film. Int. J. Hydrogen Energy. 35, 12561–12567 (2010)CrossRef
54.
go back to reference A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guérin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor. Sens. Actuators B 106, 713–718 (2005)CrossRef A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guérin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor. Sens. Actuators B 106, 713–718 (2005)CrossRef
55.
go back to reference B.G. Streetman, S. Banerjee, Solid State Electronic Devices, PHI, Fifth Edition, 2000 B.G. Streetman, S. Banerjee, Solid State Electronic Devices, PHI, Fifth Edition, 2000
56.
go back to reference L.F. Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)CrossRef L.F. Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)CrossRef
57.
go back to reference J. Lin, E. Obermeier, Capacitive thin film gas sensor with signal processing system for determination of SO2. Sens. Actuators B 16, 319–322 (1993)CrossRef J. Lin, E. Obermeier, Capacitive thin film gas sensor with signal processing system for determination of SO2. Sens. Actuators B 16, 319–322 (1993)CrossRef
58.
go back to reference P.M. Faia, E.L. Jesus, C.S. Louro, TiO2:WO3 composite humidity sensors doped with ZnO and CuO investigated by impedance spectroscopy. Sens. Actuators B 203, 340–348 (2014)CrossRef P.M. Faia, E.L. Jesus, C.S. Louro, TiO2:WO3 composite humidity sensors doped with ZnO and CuO investigated by impedance spectroscopy. Sens. Actuators B 203, 340–348 (2014)CrossRef
59.
go back to reference L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, X.J. Li, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)CrossRef L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, X.J. Li, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)CrossRef
60.
go back to reference M. Kaur, S.K. Gupta, C.A. Betty, V. Saxena, V.R. Katti, S.C. Gadkari, J.V. Yakhmi, Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sens. Actuators B 107, 360–365 (2005)CrossRef M. Kaur, S.K. Gupta, C.A. Betty, V. Saxena, V.R. Katti, S.C. Gadkari, J.V. Yakhmi, Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sens. Actuators B 107, 360–365 (2005)CrossRef
61.
go back to reference J. Wang, M. Su, J. Qi, L. Chang, Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens. Actuators B 139, 418–424 (2009)CrossRef J. Wang, M. Su, J. Qi, L. Chang, Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens. Actuators B 139, 418–424 (2009)CrossRef
62.
go back to reference Y. Li, W.F. Jiang, S.H. Xiao, Y.F. Dong, H.F. Ji, X.J.Li, Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array. Physica E 41, 621–625 (2009)CrossRef Y. Li, W.F. Jiang, S.H. Xiao, Y.F. Dong, H.F. Ji, X.J.Li, Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array. Physica E 41, 621–625 (2009)CrossRef
63.
go back to reference W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, X.J. Li, Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators B 125, 651–655 (2007)CrossRef W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, X.J. Li, Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators B 125, 651–655 (2007)CrossRef
64.
go back to reference W. Li, E. Dai, G. Bai, J. Xu, Depth-dependent humidity sensing properties of silicon nanopillar array. Sens. Actuators B 237, 526–533 (2016)CrossRef W. Li, E. Dai, G. Bai, J. Xu, Depth-dependent humidity sensing properties of silicon nanopillar array. Sens. Actuators B 237, 526–533 (2016)CrossRef
65.
go back to reference L.L. Wang, L.P. Kang, H.Y. Wang, Z.P. Chen, Xin Jian Li, Capacitive humidity sensitivity of SnO2:Sn thin film grown on silicon nanoporous pillar array. Sens. Actuators B 229, 513–519 (2016)CrossRef L.L. Wang, L.P. Kang, H.Y. Wang, Z.P. Chen, Xin Jian Li, Capacitive humidity sensitivity of SnO2:Sn thin film grown on silicon nanoporous pillar array. Sens. Actuators B 229, 513–519 (2016)CrossRef
66.
go back to reference H.J. Xu, X.J. Li, Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express. 16, 2933–2941 (2008)CrossRef H.J. Xu, X.J. Li, Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express. 16, 2933–2941 (2008)CrossRef
67.
go back to reference Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sens. Actuators A 235, 234–239 (2015)CrossRef Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sens. Actuators A 235, 234–239 (2015)CrossRef
68.
go back to reference H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array., Sens. Actuators B 166–167, 451–456 (2012)CrossRef H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array., Sens. Actuators B 166–167, 451–456 (2012)CrossRef
69.
go back to reference A. Salomonsson, S. Roy, C. Aulin, J. Cerdà, P.O. Käll, L. Ojamäe, M. Strand, M. Sanati, A.L. Spetz, Nanoparticles for long-term stable, more selective MISiCFET gas sensors. Sens. Actuators B 107, 831–838 (2005)CrossRef A. Salomonsson, S. Roy, C. Aulin, J. Cerdà, P.O. Käll, L. Ojamäe, M. Strand, M. Sanati, A.L. Spetz, Nanoparticles for long-term stable, more selective MISiCFET gas sensors. Sens. Actuators B 107, 831–838 (2005)CrossRef
70.
go back to reference R. Loloee, B. Chorpening, S. Beer, R.N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sens. Actuators B 129, 200–210 (2008)CrossRef R. Loloee, B. Chorpening, S. Beer, R.N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sens. Actuators B 129, 200–210 (2008)CrossRef
71.
go back to reference F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, M. Eickhoff, A highly stable SiC based microhotplate NO2 gas-sensor. Sens. Actuators B 78, 216–220 (2001)CrossRef F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, M. Eickhoff, A highly stable SiC based microhotplate NO2 gas-sensor. Sens. Actuators B 78, 216–220 (2001)CrossRef
72.
go back to reference N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)CrossRef N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)CrossRef
73.
go back to reference Y. Qiu, S. Yang, ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345–1352 (2007)CrossRef Y. Qiu, S. Yang, ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345–1352 (2007)CrossRef
74.
go back to reference X. Hu, J. Gong, L. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845–4850 (2008)CrossRef X. Hu, J. Gong, L. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845–4850 (2008)CrossRef
75.
go back to reference Q. Qi, T. Zhang, Q.J. Yu, R. Wang, Y. Zeng, L. Liu, H.B. Yang, Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sens. Actuators B 133, 638–643 (2008)CrossRef Q. Qi, T. Zhang, Q.J. Yu, R. Wang, Y. Zeng, L. Liu, H.B. Yang, Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sens. Actuators B 133, 638–643 (2008)CrossRef
76.
go back to reference B. Tao, J. Zhang, F. Miao, H. Li, L. Wan, Y. Wang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens. Actuators B 136, 144–150 (2009)CrossRef B. Tao, J. Zhang, F. Miao, H. Li, L. Wan, Y. Wang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens. Actuators B 136, 144–150 (2009)CrossRef
77.
go back to reference H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, B.T. Dai, Si nanowire-based humidity sensors prepared on glass substrate. IEEE Sens. J. 11, 3036–3041 (2011)CrossRef H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, B.T. Dai, Si nanowire-based humidity sensors prepared on glass substrate. IEEE Sens. J. 11, 3036–3041 (2011)CrossRef
78.
go back to reference X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators B 156, 631–636 (2011)CrossRef X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators B 156, 631–636 (2011)CrossRef
79.
go back to reference K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B 224, 338–343 (2016)CrossRef K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B 224, 338–343 (2016)CrossRef
80.
go back to reference Y. Lee, C. Huang, H. Chen, H. Yang, Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens. Actuators B 189, 307–312 (2013)CrossRef Y. Lee, C. Huang, H. Chen, H. Yang, Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens. Actuators B 189, 307–312 (2013)CrossRef
81.
go back to reference X. Zhou, J. Li, M. Ma, Q. Xue, Effect of ethanol gas on the electrical properties of ZnO nanorods. Physica E. 43, 1056–1060 (2011)CrossRef X. Zhou, J. Li, M. Ma, Q. Xue, Effect of ethanol gas on the electrical properties of ZnO nanorods. Physica E. 43, 1056–1060 (2011)CrossRef
82.
go back to reference X. Song, Q.Q.T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)CrossRef X. Song, Q.Q.T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)CrossRef
83.
go back to reference K. Dutta, A. Hazra, P. Bhattacharyya, Ti/TiO2 nanotube array/Ti capacitive device for non-polar aromatic hydrocarbon detection. IEEE Trans. Device Mater. Reliab. 16, 235–242 (2016)CrossRef K. Dutta, A. Hazra, P. Bhattacharyya, Ti/TiO2 nanotube array/Ti capacitive device for non-polar aromatic hydrocarbon detection. IEEE Trans. Device Mater. Reliab. 16, 235–242 (2016)CrossRef
84.
go back to reference T. Terencio, F. Di Renzo, D. Berthomieu, P. Trens, Adsorption of acetone vapor by Cu-BTC: an experimental and computational study. J. Phys. Chem. C. 117, 26156–26165 (2013)CrossRef T. Terencio, F. Di Renzo, D. Berthomieu, P. Trens, Adsorption of acetone vapor by Cu-BTC: an experimental and computational study. J. Phys. Chem. C. 117, 26156–26165 (2013)CrossRef
85.
go back to reference P. Davydovskaya, A. Ranft, B.V. Lotsch, R. Pohle, Analyte detection with Cu-BTC metal–organic framework thin films by means of mass-sensitive and work-function-based readout. Anal. Chem. 86, 6948–6958 (2014)CrossRef P. Davydovskaya, A. Ranft, B.V. Lotsch, R. Pohle, Analyte detection with Cu-BTC metal–organic framework thin films by means of mass-sensitive and work-function-based readout. Anal. Chem. 86, 6948–6958 (2014)CrossRef
86.
go back to reference Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275510 (2011)CrossRef Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275510 (2011)CrossRef
87.
go back to reference D. Li, Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003)CrossRef D. Li, Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003)CrossRef
88.
go back to reference Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009)CrossRef Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009)CrossRef
89.
go back to reference S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef
90.
go back to reference J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis. Sens. Actuators B 114, 943–949 (2006)CrossRef J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis. Sens. Actuators B 114, 943–949 (2006)CrossRef
91.
go back to reference S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mater. 13, 1327–1332 (2004)CrossRef S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mater. 13, 1327–1332 (2004)CrossRef
92.
go back to reference S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRef S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRef
93.
go back to reference A. Ghosh, D. Late, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, NO2 and humidity sensing characteristics of few-layer graphenes. J. Exp. Nanosci. 4, 313–322 (2009)CrossRef A. Ghosh, D. Late, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, NO2 and humidity sensing characteristics of few-layer graphenes. J. Exp. Nanosci. 4, 313–322 (2009)CrossRef
94.
go back to reference R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef
95.
go back to reference M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications, IGI Global 2016 M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications, IGI Global 2016
96.
go back to reference H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRef H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRef
97.
go back to reference S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 7, 11166–11173 (2013)CrossRef S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 7, 11166–11173 (2013)CrossRef
98.
go back to reference S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83, 2280–2282 (2003)CrossRef S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83, 2280–2282 (2003)CrossRef
99.
go back to reference V. Vizcaino, M. Jelisavcic, J.P. Sullivan, S.J. Buckman, Elastic electron scattering from formic acid (HCOOH): absolute differential cross-sections. New J. Phys. 8, 85–93 (2006)CrossRef V. Vizcaino, M. Jelisavcic, J.P. Sullivan, S.J. Buckman, Elastic electron scattering from formic acid (HCOOH): absolute differential cross-sections. New J. Phys. 8, 85–93 (2006)CrossRef
100.
go back to reference S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)CrossRef S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)CrossRef
101.
go back to reference Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)CrossRef Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)CrossRef
102.
go back to reference M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle-based passive capacitive sensor for ethylene detection. J. Nanomater. 2012, 145406–145410 (2012)CrossRef M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle-based passive capacitive sensor for ethylene detection. J. Nanomater. 2012, 145406–145410 (2012)CrossRef
103.
go back to reference F. Miao, B. Tao, L. Sun, T. Liu, J. You, L. Wang, P.K. Chu, Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sens. Actuators A 160, 48–53 (2010)CrossRef F. Miao, B. Tao, L. Sun, T. Liu, J. You, L. Wang, P.K. Chu, Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sens. Actuators A 160, 48–53 (2010)CrossRef
104.
go back to reference H. Chen, Q. Xue, M. Ma, X. Zhou, Capacitive humidity sensor based on amorphous carbon film/Si heterojunctions. Sens. Actuators B 150, 487–489 (2010)CrossRef H. Chen, Q. Xue, M. Ma, X. Zhou, Capacitive humidity sensor based on amorphous carbon film/Si heterojunctions. Sens. Actuators B 150, 487–489 (2010)CrossRef
105.
go back to reference L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRef L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRef
Metadata
Title
Capacitive gas and vapor sensors using nanomaterials
Authors
P. Bindra
A. Hazra
Publication date
29-01-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8606-2

Other articles of this Issue 8/2018

Journal of Materials Science: Materials in Electronics 8/2018 Go to the issue