Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2018

01-02-2018

Structural, electrical and magnetic properties of nanosize and bulk Ni0.7Zn0.3Fe2O4 obtained by thermal autocatalytic decomposition of Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4 precursor

Authors: Prajyoti P. Gauns Dessai, V. M. S. Verenkar

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanosized Ni0.7Zn0.3Fe2O4 was synthesized by combustion of fumarato-hydrazinate precursor of metals having formula Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4. The precursor was chemically analyzed and was subjected to TG–DTG–DTA and infrared spectroscopy (IR) studies. The decomposition of the precursor was also studied isothermally at predefined temperature along with hydrazine estimation. The X-ray diffraction (XRD), IR, transmission electron microscopy (TEM), scanning electron microscopy, thermal analysis (TG–DTA), AC susceptibility and vibrating sample magnetometry were employed to investigate structural, thermal, electric and magnetic aspects of the ‘as prepared’ and ‘sintered’ Ni0.7Zn0.3Fe2O4 along with precursor. The nanosized single phase formation of ‘as prepared’ Ni0.7Zn0.3Fe2O4 was confirmed by XRD, IR and TEM. The XRD of sintered sample showed formation of impurity free Ni0.7Zn0.3Fe2O4 while AC susceptibility studies showed lower Curie temperature than ‘as prepared’ oxide with predominantly MD type of particles. The sintered sample also showed higher saturation magnetization and lower coercivity as compared to the ‘as prepared’ sample. The ZFC–FC studies revealed decrease in blocking temperature with increasing applied magnetic field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Thakur, S.C. Katyal, M. Singh, Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1–7 (2009)CrossRef S. Thakur, S.C. Katyal, M. Singh, Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1–7 (2009)CrossRef
2.
go back to reference M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)CrossRef M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)CrossRef
3.
go back to reference A.M. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28, 363–367 (2002)CrossRef A.M. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28, 363–367 (2002)CrossRef
4.
go back to reference R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic hysteresis studies of Ni1−xZnxFe2O4 prepared by non-conventional techniques. Mater. Lett. 57, 2666–2669 (2003)CrossRef R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic hysteresis studies of Ni1−xZnxFe2O4 prepared by non-conventional techniques. Mater. Lett. 57, 2666–2669 (2003)CrossRef
5.
go back to reference J. Bera, P.K. Roy, Effect of grain size on electromagnetic properties of Ni0.7Zn0.3Fe2O4 ferrite. Phys. B 363, 128–132 (2005)CrossRef J. Bera, P.K. Roy, Effect of grain size on electromagnetic properties of Ni0.7Zn0.3Fe2O4 ferrite. Phys. B 363, 128–132 (2005)CrossRef
6.
go back to reference S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.J. Shukla, K.M. Jadhav, Effect of cation proportion on the structural and magnetic properties of Ni-Zn ferrites nano-size particles prepared by co-precipitation technique. Chin. J. Chem. Phys. 21, 381–386 (2008)CrossRef S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.J. Shukla, K.M. Jadhav, Effect of cation proportion on the structural and magnetic properties of Ni-Zn ferrites nano-size particles prepared by co-precipitation technique. Chin. J. Chem. Phys. 21, 381–386 (2008)CrossRef
7.
go back to reference A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, L. Gama, Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, e370–e372 (2008)CrossRef A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, L. Gama, Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, e370–e372 (2008)CrossRef
8.
go back to reference G. Umapathy, G. Senguttuvam, L.J. Berchmans, V. Sivakumar, Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique. J. Mater. Sci. Mater. Electron. 27, 7062–7072 (2016)CrossRef G. Umapathy, G. Senguttuvam, L.J. Berchmans, V. Sivakumar, Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique. J. Mater. Sci. Mater. Electron. 27, 7062–7072 (2016)CrossRef
9.
go back to reference M. Hamedoun, A. Benyoussef, M. Bousmina, Magnetic properties and phase diagram of ZnxNi1–xFe2O4: high-temperature series expansions. J. Magn. Magn. Mater. 322, 3227–3235 (2010)CrossRef M. Hamedoun, A. Benyoussef, M. Bousmina, Magnetic properties and phase diagram of ZnxNi1–xFe2O4: high-temperature series expansions. J. Magn. Magn. Mater. 322, 3227–3235 (2010)CrossRef
10.
go back to reference M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1−xZnxFe2O4 ferrite. Phys. B 405, 507–512 (2010)CrossRef M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1−xZnxFe2O4 ferrite. Phys. B 405, 507–512 (2010)CrossRef
11.
go back to reference A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010)CrossRef A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010)CrossRef
12.
go back to reference S. Nasir, G. Asghar, M.A. Malik, M. Anis-u-Rehman, Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J. Sol-Gel Sci. Technol. 59, 111–116 (2011)CrossRef S. Nasir, G. Asghar, M.A. Malik, M. Anis-u-Rehman, Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J. Sol-Gel Sci. Technol. 59, 111–116 (2011)CrossRef
13.
go back to reference R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L.J. Berchmans, Structural, morphological, optical, magnetic and dielectric properties of Ni1−xZnxFe2O4 (x = 0–1) nanoparticles. J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)CrossRef R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L.J. Berchmans, Structural, morphological, optical, magnetic and dielectric properties of Ni1−xZnxFe2O4 (x = 0–1) nanoparticles. J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)CrossRef
14.
go back to reference M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)CrossRef M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)CrossRef
15.
go back to reference F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443–2455 (2012)CrossRef F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443–2455 (2012)CrossRef
16.
go back to reference Ch Srinivas, B.V. Tirupanyam, A. Satish, V. Seshubai, D.L. Sastry, O.F. Caltun, Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)CrossRef Ch Srinivas, B.V. Tirupanyam, A. Satish, V. Seshubai, D.L. Sastry, O.F. Caltun, Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)CrossRef
17.
go back to reference Ch Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, C.S. Babu, K.S. Ramakrishna, D.M. Potukuchi, D.L. Sastry, Structural and magnetic characterization of co-precipitated NixZn1–xFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)CrossRef Ch Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, C.S. Babu, K.S. Ramakrishna, D.M. Potukuchi, D.L. Sastry, Structural and magnetic characterization of co-precipitated NixZn1–xFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)CrossRef
18.
go back to reference S.Y. Sawant, K.R. Kannan, V.M.S. Verenkar, Synthesis, characterization and thermal analysis of nickel manganese fumarato-hydrazinate, in Proceeding of the 13th National Symposium on Thermal Analysis, BARC Mumbai, Indian Thermal Analysis Society, 2002, pp. 154–155 S.Y. Sawant, K.R. Kannan, V.M.S. Verenkar, Synthesis, characterization and thermal analysis of nickel manganese fumarato-hydrazinate, in Proceeding of the 13th National Symposium on Thermal Analysis, BARC Mumbai, Indian Thermal Analysis Society, 2002, pp. 154–155
19.
go back to reference K.S. Rane, V.M.S. Verenkar, Synthesis of ferrite grade γ-Fe2O3. Bull. Mater. Sci. 24, 39–45 (2001)CrossRef K.S. Rane, V.M.S. Verenkar, Synthesis of ferrite grade γ-Fe2O3. Bull. Mater. Sci. 24, 39–45 (2001)CrossRef
20.
go back to reference R.A. Porob, S.Z. Khan, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, TG, DSC, and infrared spectral study of NiMn2(C4H4O4)3·6N2H4-a precursor for NiMn2O4 nanoparticles. J. Therm. Anal. Calorim. 86, 605–608 (2006)CrossRef R.A. Porob, S.Z. Khan, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, TG, DSC, and infrared spectral study of NiMn2(C4H4O4)3·6N2H4-a precursor for NiMn2O4 nanoparticles. J. Therm. Anal. Calorim. 86, 605–608 (2006)CrossRef
21.
go back to reference S.Y. Sawant, V.M.S. Verenkar, S.C. Mojumdar, Preparation, thermal, XRD, chemical, and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J. Therm. Anal. Calorim. 90, 669–672 (2007)CrossRef S.Y. Sawant, V.M.S. Verenkar, S.C. Mojumdar, Preparation, thermal, XRD, chemical, and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J. Therm. Anal. Calorim. 90, 669–672 (2007)CrossRef
22.
go back to reference A. More, V.M.S. Verenkar, S.C. Mojumdar, Nickel ferrite nanoparticle synthesis from novel fumarato-hydrazinate precursor. J. Therm. Anal. Calorim. 94, 63–67 (2008)CrossRef A. More, V.M.S. Verenkar, S.C. Mojumdar, Nickel ferrite nanoparticle synthesis from novel fumarato-hydrazinate precursor. J. Therm. Anal. Calorim. 94, 63–67 (2008)CrossRef
23.
go back to reference L.R. Gonsalves, V.M.S. Verenkar, S.C. Mojumdar, Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 96, 53–57 (2009)CrossRef L.R. Gonsalves, V.M.S. Verenkar, S.C. Mojumdar, Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 96, 53–57 (2009)CrossRef
24.
go back to reference U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle: preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J. Therm. Anal. Calorim. 96, 49–52 (2009)CrossRef U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle: preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J. Therm. Anal. Calorim. 96, 49–52 (2009)CrossRef
25.
go back to reference L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J. Therm. Anal. Calorim. 100, 789–792 (2010)CrossRef L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J. Therm. Anal. Calorim. 100, 789–792 (2010)CrossRef
26.
go back to reference U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, characterization, infrared studies and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J. Therm. Anal. Calorim. 100, 867–871 (2010)CrossRef U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, characterization, infrared studies and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J. Therm. Anal. Calorim. 100, 867–871 (2010)CrossRef
27.
go back to reference L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 104, 869–873 (2011)CrossRef L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 104, 869–873 (2011)CrossRef
28.
go back to reference U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by auto catalytic thermal decomposition of carboxylato-hydrazinate complex. J. Therm. Anal. Calorim. 104, 879–883 (2011)CrossRef U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by auto catalytic thermal decomposition of carboxylato-hydrazinate complex. J. Therm. Anal. Calorim. 104, 879–883 (2011)CrossRef
29.
go back to reference L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of ultrafine spinel ferrites obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 859–863 (2012)CrossRef L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of ultrafine spinel ferrites obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 859–863 (2012)CrossRef
30.
go back to reference U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: synthesis, characterization and studies of magnetic and electrical properties. J. Therm. Anal. Calorim. 108, 865–870 (2012)CrossRef U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: synthesis, characterization and studies of magnetic and electrical properties. J. Therm. Anal. Calorim. 108, 865–870 (2012)CrossRef
31.
go back to reference L.R. Gonsalves, V.M.S. Verenkar, Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate: a precursor to obtain nanosize ferrites. J. Therm. Anal. Calorim. 108, 871–875 (2012)CrossRef L.R. Gonsalves, V.M.S. Verenkar, Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate: a precursor to obtain nanosize ferrites. J. Therm. Anal. Calorim. 108, 871–875 (2012)CrossRef
32.
go back to reference L.R. Gonsalves, V.M.S. Verenkar, Synthesis and characterization of nanosize nickel doped cobalt ferrite obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 877–880 (2012)CrossRef L.R. Gonsalves, V.M.S. Verenkar, Synthesis and characterization of nanosize nickel doped cobalt ferrite obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 877–880 (2012)CrossRef
33.
go back to reference U.B. Gawas, V.M.S. Verenkar, Synthesis, thermo-analytical and IR spectral studies of hydrazinated mixed metal carboxylates: a single source precursor to nanosize mixed metal oxides. Thermochim. Acta 556, 41–46 (2013)CrossRef U.B. Gawas, V.M.S. Verenkar, Synthesis, thermo-analytical and IR spectral studies of hydrazinated mixed metal carboxylates: a single source precursor to nanosize mixed metal oxides. Thermochim. Acta 556, 41–46 (2013)CrossRef
34.
go back to reference U.B. Gawas, V.M.S. Verenkar, Synthesis, thermal and infrared spectroscopic studies of hydrazinated mixed metal fumarates. J. Therm. Anal. Calorim. 115, 375–381 (2014)CrossRef U.B. Gawas, V.M.S. Verenkar, Synthesis, thermal and infrared spectroscopic studies of hydrazinated mixed metal fumarates. J. Therm. Anal. Calorim. 115, 375–381 (2014)CrossRef
35.
go back to reference S.G. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate: a single source precursor to nanocrystalline Ni0.4Co0.2Zn0.4Fe2O4. J. Therm. Anal. Calorim. 119, 825–830 (2015)CrossRef S.G. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate: a single source precursor to nanocrystalline Ni0.4Co0.2Zn0.4Fe2O4. J. Therm. Anal. Calorim. 119, 825–830 (2015)CrossRef
36.
go back to reference S.G. Gawas, V.M.S. Verenkar, Precursor combustion synthesis of nanocrystalline cobalt substituted nickel zinc ferrites from hydrazinated mixed metal fumarates. Thermochim. Acta 605, 16–21 (2015)CrossRef S.G. Gawas, V.M.S. Verenkar, Precursor combustion synthesis of nanocrystalline cobalt substituted nickel zinc ferrites from hydrazinated mixed metal fumarates. Thermochim. Acta 605, 16–21 (2015)CrossRef
37.
go back to reference U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloy. Compd. 555, 225–231 (2013)CrossRef U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloy. Compd. 555, 225–231 (2013)CrossRef
38.
go back to reference D.H. Wilkins, The determination of nickel, cobalt, iron and zinc in ferrites. Anal. Chim. Acta 20, 271–273 (1959)CrossRef D.H. Wilkins, The determination of nickel, cobalt, iron and zinc in ferrites. Anal. Chim. Acta 20, 271–273 (1959)CrossRef
39.
go back to reference G.H. Jeffery, J. Bassett, J. Mendham, R.C. Danney (eds.), Vogel’s Text Book of Quantitative Inorganic Analysis’, 5th edn. (Logman, London, 1989) G.H. Jeffery, J. Bassett, J. Mendham, R.C. Danney (eds.), Vogel’s Text Book of Quantitative Inorganic Analysis’, 5th edn. (Logman, London, 1989)
40.
go back to reference K.S. Rane, V.M.S. Verenkar, R.M. Pednekar, P.Y. Sawant, Hydrazine method of synthesis of γ- Fe2O3. J. Mater. Sci. Mater. Electron. 10, 121–132 (1999)CrossRef K.S. Rane, V.M.S. Verenkar, R.M. Pednekar, P.Y. Sawant, Hydrazine method of synthesis of γ- Fe2O3. J. Mater. Sci. Mater. Electron. 10, 121–132 (1999)CrossRef
41.
go back to reference A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behavior of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)CrossRef A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behavior of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)CrossRef
42.
go back to reference I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)CrossRef I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)CrossRef
43.
go back to reference P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203, 348–353 (2010)CrossRef P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203, 348–353 (2010)CrossRef
44.
go back to reference E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)CrossRef E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)CrossRef
45.
go back to reference A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018–2025 (2008)CrossRef A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018–2025 (2008)CrossRef
46.
go back to reference A. Hajalilou, H.M. Kamari, K. Shameli, Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles. J. Alloy. Compd. 708, 813–826 (2017)CrossRef A. Hajalilou, H.M. Kamari, K. Shameli, Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles. J. Alloy. Compd. 708, 813–826 (2017)CrossRef
47.
go back to reference M.A. Ali, M.M. Uddin, M.N.I. Khan, F.-U.-Z. Chowdhury, S.M. Haque, Structural, morphological and electrical properties of Sn- substituted Ni-Zn ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 424, 148–154 (2017)CrossRef M.A. Ali, M.M. Uddin, M.N.I. Khan, F.-U.-Z. Chowdhury, S.M. Haque, Structural, morphological and electrical properties of Sn- substituted Ni-Zn ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 424, 148–154 (2017)CrossRef
48.
go back to reference N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni-Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322, 1999–2005 (2010)CrossRef N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni-Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322, 1999–2005 (2010)CrossRef
49.
go back to reference T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)CrossRef T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)CrossRef
50.
go back to reference O.A. Li, C.-R. Lin, H.-Y. Chen, H.-S. Hsu, K.-Y. Shih, I.S. Edelman, K.-W. Wu, Y.-T. Tseng, S.G. Ovchinnikov, J.-S. Lee, Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 408, 206–212 (2016)CrossRef O.A. Li, C.-R. Lin, H.-Y. Chen, H.-S. Hsu, K.-Y. Shih, I.S. Edelman, K.-W. Wu, Y.-T. Tseng, S.G. Ovchinnikov, J.-S. Lee, Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 408, 206–212 (2016)CrossRef
51.
go back to reference V. Grimal, D. Autissier, L. Longuet, H. Pascard, M. Gervais, Iron, nickel and zinc stoichiometric influences on the dynamic magneto-elastic properties of spinel ferrites. J. Eur. Ceram. Soc. 26, 3687–3693 (2006)CrossRef V. Grimal, D. Autissier, L. Longuet, H. Pascard, M. Gervais, Iron, nickel and zinc stoichiometric influences on the dynamic magneto-elastic properties of spinel ferrites. J. Eur. Ceram. Soc. 26, 3687–3693 (2006)CrossRef
52.
go back to reference S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014)CrossRef S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014)CrossRef
53.
go back to reference Y.B. Kannan, R. Saravanan, N. Srinivasan, I. Ismail, Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles. J. Magn. Magn. Mater. 423, 217–225 (2017)CrossRef Y.B. Kannan, R. Saravanan, N. Srinivasan, I. Ismail, Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles. J. Magn. Magn. Mater. 423, 217–225 (2017)CrossRef
54.
go back to reference R.E. Kumar, A.S. Kamzin, T. Prakash, Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J. Magn. Magn. Mater. 378, 389–396 (2015)CrossRef R.E. Kumar, A.S. Kamzin, T. Prakash, Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J. Magn. Magn. Mater. 378, 389–396 (2015)CrossRef
55.
go back to reference M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel, Cr-substituted Ni-Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties. J. Magn. Magn. Mater. 391, 108–115 (2015)CrossRef M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel, Cr-substituted Ni-Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties. J. Magn. Magn. Mater. 391, 108–115 (2015)CrossRef
56.
go back to reference I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka, D. Gaworska-Koniarek, The effect of the sol-gel autocombustion synthesis conditions on the Mn-Zn ferrite magnetic properties. J. Alloy. Compd. 604, 1–7 (2014)CrossRef I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka, D. Gaworska-Koniarek, The effect of the sol-gel autocombustion synthesis conditions on the Mn-Zn ferrite magnetic properties. J. Alloy. Compd. 604, 1–7 (2014)CrossRef
Metadata
Title
Structural, electrical and magnetic properties of nanosize and bulk Ni0.7Zn0.3Fe2O4 obtained by thermal autocatalytic decomposition of Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4 precursor
Authors
Prajyoti P. Gauns Dessai
V. M. S. Verenkar
Publication date
01-02-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8679-y

Other articles of this Issue 8/2018

Journal of Materials Science: Materials in Electronics 8/2018 Go to the issue