Skip to main content
Top
Published in: Microsystem Technologies 8/2017

20-06-2016 | Technical Paper

Capacitive MEMS absolute pressure sensor using a modified commercial microfabrication process

Authors: Adel Merdassi, Charles Allan, Edward J. Harvey, Vamsy P. Chodavarapu

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the design and fabrication of a capacitive absolute pressure sensor using a modified commercial microfabrication process. The pressure sensor is fabricated using MEMS Integrated Design for Inertial Sensors (MIDIS), a process recently developed by Teledyne DALSA Semiconductor Inc. (TDSI). The MIDIS process provides wafer-level vacuum encapsulation under a high vacuum pressure of 10 mtorr, which enables the absolute pressure measurement. We perform post-fabrication processing of the obtained devices from the foundry to create a thin single crystal silicon membrane and expose it to atmospheric pressure to serve as the sensing membrane for the pressure sensor. The proposed pressure device includes Through Silicon Vias (TSVs) suitable for flip-chip bonding with a signal conditioning integrated circuit. The presented sensor uses a deflectable large membrane with accurate controllable thickness and offers a high sensitivity of 16.5 fF/kPa with a good linearity over designed pressure range of 101–125 kPa. The operating pressure range can be modified by simply varying the physical dimensions of the sensing membrane. We demonstrate several prototype absolute capacitive pressure sensors with different membrane diameters ranging from 140 to 360 µm and thicknesses ranging from 1 to 10 µm with a fixed gap of 2 µm between the membrane and immovable electrode. The sensor calibration data is collected in a regulated pressure chamber using a reference commercial pressure sensor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef
go back to reference Bryzek J, Roundy S, Bircumshaw B, Chung C, Castellino K, Stetter JR et al (2006) Marvelous MEMS. Circuits Devices Mag IEEE 22:8–28CrossRef Bryzek J, Roundy S, Bircumshaw B, Chung C, Castellino K, Stetter JR et al (2006) Marvelous MEMS. Circuits Devices Mag IEEE 22:8–28CrossRef
go back to reference Chan WP, Narducci M, Gao Y, Cheng MY, Cheong JH, George AK et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J Solid-State Circuits 49:2449–2461CrossRef Chan WP, Narducci M, Gao Y, Cheng MY, Cheong JH, George AK et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J Solid-State Circuits 49:2449–2461CrossRef
go back to reference Chavan AV, Wise KD (2001) Batch-processed vacuum-sealed capacitive pressure sensors. J Microelectromech Syst 10:580–588CrossRef Chavan AV, Wise KD (2001) Batch-processed vacuum-sealed capacitive pressure sensors. J Microelectromech Syst 10:580–588CrossRef
go back to reference Chiou JC, Huang YC, Yeh GT (2016) A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J Micromech Microeng 26(1) Chiou JC, Huang YC, Yeh GT (2016) A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J Micromech Microeng 26(1)
go back to reference Chitnis G, Maleki T, Samuels B, Cantor LB (2013) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60:250–256CrossRef Chitnis G, Maleki T, Samuels B, Cantor LB (2013) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60:250–256CrossRef
go back to reference Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45:361–369CrossRef Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45:361–369CrossRef
go back to reference DeHennis A, Chae J (2008) Pressure sensors. In: Comprehensive microsystems, vol 2. Elsevier, pp 101–133 DeHennis A, Chae J (2008) Pressure sensors. In: Comprehensive microsystems, vol 2. Elsevier, pp 101–133
go back to reference Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:529–539CrossRef Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:529–539CrossRef
go back to reference Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7) Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7)
go back to reference Guckel H, Burns DW, Tilmans HAC, DeRoo DW (1988) Mechanical properties of fine grained polysilicon-the repeatability issue, presented at the Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE, Hilton Head Island, SC, USA Guckel H, Burns DW, Tilmans HAC, DeRoo DW (1988) Mechanical properties of fine grained polysilicon-the repeatability issue, presented at the Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE, Hilton Head Island, SC, USA
go back to reference Hsu YP, Young DJ (2014) Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sens J 14:3490–3497CrossRef Hsu YP, Young DJ (2014) Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sens J 14:3490–3497CrossRef
go back to reference Jones TB, Nenadic NG (2013) Practical MEMS devices. In: Electromechanics and MEMS. Cambridge University Press, p 577 Jones TB, Nenadic NG (2013) Practical MEMS devices. In: Electromechanics and MEMS. Cambridge University Press, p 577
go back to reference Kaajakari V (2009) Practical MEMS: design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Small Gear Publishing, Las Vegas Kaajakari V (2009) Practical MEMS: design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Small Gear Publishing, Las Vegas
go back to reference Leclerc J (2007) MEMs for aerospace navigation. IEEE Aerosp Electron Syst Mag 22:31–36CrossRef Leclerc J (2007) MEMs for aerospace navigation. IEEE Aerosp Electron Syst Mag 22:31–36CrossRef
go back to reference Lee TJ, Zihajehzadeh S, Loh D, Hoskinson R, Park EJ (2015) Automatic jump detection in skiing/snowboarding using head-mounted MEMS inertial and pressure sensors. Proc Inst Mech Eng Part P J Sports Eng Technol 229:278–287 Lee TJ, Zihajehzadeh S, Loh D, Hoskinson R, Park EJ (2015) Automatic jump detection in skiing/snowboarding using head-mounted MEMS inertial and pressure sensors. Proc Inst Mech Eng Part P J Sports Eng Technol 229:278–287
go back to reference Merdassi A, Kezzo MN, Xereas G, Chodavarapu VP (2015a) Wafer level vacuum encapsulated tri-axial accelerometer with low cross-axis sensitivity in a commercial MEMS Process. Sensors Actuators a-Phys 236:25–37CrossRef Merdassi A, Kezzo MN, Xereas G, Chodavarapu VP (2015a) Wafer level vacuum encapsulated tri-axial accelerometer with low cross-axis sensitivity in a commercial MEMS Process. Sensors Actuators a-Phys 236:25–37CrossRef
go back to reference Merdassi A, Yang P, Chodavarapu VP (2015b) A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial. MEMS Process Sens 15:7349–7359 Merdassi A, Yang P, Chodavarapu VP (2015b) A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial. MEMS Process Sens 15:7349–7359
go back to reference Saejok K, Phinyo B, Chaowicharat E, Ratanaudomphisut E (2008) Effect of temperature to characteristics of polysilicon based surface micromachining piezoresistive pressure sensor, presented at the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on Krabi Saejok K, Phinyo B, Chaowicharat E, Ratanaudomphisut E (2008) Effect of temperature to characteristics of polysilicon based surface micromachining piezoresistive pressure sensor, presented at the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on Krabi
go back to reference Sharma M, Sarraf EH, Baskaran R, Cretu E (2012) Parametric resonance: amplification and damping in MEMS gyroscopes. Sens Actuators a-Phys 177:79–86CrossRef Sharma M, Sarraf EH, Baskaran R, Cretu E (2012) Parametric resonance: amplification and damping in MEMS gyroscopes. Sens Actuators a-Phys 177:79–86CrossRef
go back to reference Stone R, Gardien F, Filipe A, Pisella C, Roggi A, Boillot FO-X (2010) Miniature implantable pressure sensors for medical applications. J Med Devices 4:027507-027507CrossRef Stone R, Gardien F, Filipe A, Pisella C, Roggi A, Boillot FO-X (2010) Miniature implantable pressure sensors for medical applications. J Med Devices 4:027507-027507CrossRef
go back to reference Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9) Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9)
go back to reference Wise KD (2007) Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators a-Phys 136:39–50CrossRef Wise KD (2007) Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators a-Phys 136:39–50CrossRef
go back to reference Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated lame mode resonator with f-Q product of 2.23 × 10(13) Hz. IEEE Electron Device Lett 36:1079–1081CrossRef Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated lame mode resonator with f-Q product of 2.23 × 10(13) Hz. IEEE Electron Device Lett 36:1079–1081CrossRef
Metadata
Title
Capacitive MEMS absolute pressure sensor using a modified commercial microfabrication process
Authors
Adel Merdassi
Charles Allan
Edward J. Harvey
Vamsy P. Chodavarapu
Publication date
20-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3015-z

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue