Skip to main content
Erschienen in: Microsystem Technologies 8/2017

20.06.2016 | Technical Paper

Capacitive MEMS absolute pressure sensor using a modified commercial microfabrication process

verfasst von: Adel Merdassi, Charles Allan, Edward J. Harvey, Vamsy P. Chodavarapu

Erschienen in: Microsystem Technologies | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present the design and fabrication of a capacitive absolute pressure sensor using a modified commercial microfabrication process. The pressure sensor is fabricated using MEMS Integrated Design for Inertial Sensors (MIDIS), a process recently developed by Teledyne DALSA Semiconductor Inc. (TDSI). The MIDIS process provides wafer-level vacuum encapsulation under a high vacuum pressure of 10 mtorr, which enables the absolute pressure measurement. We perform post-fabrication processing of the obtained devices from the foundry to create a thin single crystal silicon membrane and expose it to atmospheric pressure to serve as the sensing membrane for the pressure sensor. The proposed pressure device includes Through Silicon Vias (TSVs) suitable for flip-chip bonding with a signal conditioning integrated circuit. The presented sensor uses a deflectable large membrane with accurate controllable thickness and offers a high sensitivity of 16.5 fF/kPa with a good linearity over designed pressure range of 101–125 kPa. The operating pressure range can be modified by simply varying the physical dimensions of the sensing membrane. We demonstrate several prototype absolute capacitive pressure sensors with different membrane diameters ranging from 140 to 360 µm and thicknesses ranging from 1 to 10 µm with a fixed gap of 2 µm between the membrane and immovable electrode. The sensor calibration data is collected in a regulated pressure chamber using a reference commercial pressure sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef
Zurück zum Zitat Bryzek J, Roundy S, Bircumshaw B, Chung C, Castellino K, Stetter JR et al (2006) Marvelous MEMS. Circuits Devices Mag IEEE 22:8–28CrossRef Bryzek J, Roundy S, Bircumshaw B, Chung C, Castellino K, Stetter JR et al (2006) Marvelous MEMS. Circuits Devices Mag IEEE 22:8–28CrossRef
Zurück zum Zitat Chan WP, Narducci M, Gao Y, Cheng MY, Cheong JH, George AK et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J Solid-State Circuits 49:2449–2461CrossRef Chan WP, Narducci M, Gao Y, Cheng MY, Cheong JH, George AK et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J Solid-State Circuits 49:2449–2461CrossRef
Zurück zum Zitat Chavan AV, Wise KD (2001) Batch-processed vacuum-sealed capacitive pressure sensors. J Microelectromech Syst 10:580–588CrossRef Chavan AV, Wise KD (2001) Batch-processed vacuum-sealed capacitive pressure sensors. J Microelectromech Syst 10:580–588CrossRef
Zurück zum Zitat Chiou JC, Huang YC, Yeh GT (2016) A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J Micromech Microeng 26(1) Chiou JC, Huang YC, Yeh GT (2016) A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J Micromech Microeng 26(1)
Zurück zum Zitat Chitnis G, Maleki T, Samuels B, Cantor LB (2013) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60:250–256CrossRef Chitnis G, Maleki T, Samuels B, Cantor LB (2013) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60:250–256CrossRef
Zurück zum Zitat Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45:361–369CrossRef Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45:361–369CrossRef
Zurück zum Zitat DeHennis A, Chae J (2008) Pressure sensors. In: Comprehensive microsystems, vol 2. Elsevier, pp 101–133 DeHennis A, Chae J (2008) Pressure sensors. In: Comprehensive microsystems, vol 2. Elsevier, pp 101–133
Zurück zum Zitat Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:529–539CrossRef Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:529–539CrossRef
Zurück zum Zitat Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7) Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7)
Zurück zum Zitat Fleming WJ (2001) Overview of automotive sensors. Sens J IEEE 1:296–308CrossRef Fleming WJ (2001) Overview of automotive sensors. Sens J IEEE 1:296–308CrossRef
Zurück zum Zitat Guckel H, Burns DW, Tilmans HAC, DeRoo DW (1988) Mechanical properties of fine grained polysilicon-the repeatability issue, presented at the Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE, Hilton Head Island, SC, USA Guckel H, Burns DW, Tilmans HAC, DeRoo DW (1988) Mechanical properties of fine grained polysilicon-the repeatability issue, presented at the Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE, Hilton Head Island, SC, USA
Zurück zum Zitat Hsu YP, Young DJ (2014) Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sens J 14:3490–3497CrossRef Hsu YP, Young DJ (2014) Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sens J 14:3490–3497CrossRef
Zurück zum Zitat Jones TB, Nenadic NG (2013) Practical MEMS devices. In: Electromechanics and MEMS. Cambridge University Press, p 577 Jones TB, Nenadic NG (2013) Practical MEMS devices. In: Electromechanics and MEMS. Cambridge University Press, p 577
Zurück zum Zitat Kaajakari V (2009) Practical MEMS: design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Small Gear Publishing, Las Vegas Kaajakari V (2009) Practical MEMS: design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Small Gear Publishing, Las Vegas
Zurück zum Zitat Leclerc J (2007) MEMs for aerospace navigation. IEEE Aerosp Electron Syst Mag 22:31–36CrossRef Leclerc J (2007) MEMs for aerospace navigation. IEEE Aerosp Electron Syst Mag 22:31–36CrossRef
Zurück zum Zitat Lee TJ, Zihajehzadeh S, Loh D, Hoskinson R, Park EJ (2015) Automatic jump detection in skiing/snowboarding using head-mounted MEMS inertial and pressure sensors. Proc Inst Mech Eng Part P J Sports Eng Technol 229:278–287 Lee TJ, Zihajehzadeh S, Loh D, Hoskinson R, Park EJ (2015) Automatic jump detection in skiing/snowboarding using head-mounted MEMS inertial and pressure sensors. Proc Inst Mech Eng Part P J Sports Eng Technol 229:278–287
Zurück zum Zitat Merdassi A, Kezzo MN, Xereas G, Chodavarapu VP (2015a) Wafer level vacuum encapsulated tri-axial accelerometer with low cross-axis sensitivity in a commercial MEMS Process. Sensors Actuators a-Phys 236:25–37CrossRef Merdassi A, Kezzo MN, Xereas G, Chodavarapu VP (2015a) Wafer level vacuum encapsulated tri-axial accelerometer with low cross-axis sensitivity in a commercial MEMS Process. Sensors Actuators a-Phys 236:25–37CrossRef
Zurück zum Zitat Merdassi A, Yang P, Chodavarapu VP (2015b) A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial. MEMS Process Sens 15:7349–7359 Merdassi A, Yang P, Chodavarapu VP (2015b) A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial. MEMS Process Sens 15:7349–7359
Zurück zum Zitat Saejok K, Phinyo B, Chaowicharat E, Ratanaudomphisut E (2008) Effect of temperature to characteristics of polysilicon based surface micromachining piezoresistive pressure sensor, presented at the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on Krabi Saejok K, Phinyo B, Chaowicharat E, Ratanaudomphisut E (2008) Effect of temperature to characteristics of polysilicon based surface micromachining piezoresistive pressure sensor, presented at the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on Krabi
Zurück zum Zitat Sharma M, Sarraf EH, Baskaran R, Cretu E (2012) Parametric resonance: amplification and damping in MEMS gyroscopes. Sens Actuators a-Phys 177:79–86CrossRef Sharma M, Sarraf EH, Baskaran R, Cretu E (2012) Parametric resonance: amplification and damping in MEMS gyroscopes. Sens Actuators a-Phys 177:79–86CrossRef
Zurück zum Zitat Stone R, Gardien F, Filipe A, Pisella C, Roggi A, Boillot FO-X (2010) Miniature implantable pressure sensors for medical applications. J Med Devices 4:027507-027507CrossRef Stone R, Gardien F, Filipe A, Pisella C, Roggi A, Boillot FO-X (2010) Miniature implantable pressure sensors for medical applications. J Med Devices 4:027507-027507CrossRef
Zurück zum Zitat Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9) Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9)
Zurück zum Zitat Wise KD (2007) Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators a-Phys 136:39–50CrossRef Wise KD (2007) Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators a-Phys 136:39–50CrossRef
Zurück zum Zitat Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated lame mode resonator with f-Q product of 2.23 × 10(13) Hz. IEEE Electron Device Lett 36:1079–1081CrossRef Xereas G, Chodavarapu VP (2015) Wafer-level vacuum-encapsulated lame mode resonator with f-Q product of 2.23 × 10(13) Hz. IEEE Electron Device Lett 36:1079–1081CrossRef
Metadaten
Titel
Capacitive MEMS absolute pressure sensor using a modified commercial microfabrication process
verfasst von
Adel Merdassi
Charles Allan
Edward J. Harvey
Vamsy P. Chodavarapu
Publikationsdatum
20.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3015-z

Weitere Artikel der Ausgabe 8/2017

Microsystem Technologies 8/2017 Zur Ausgabe

Neuer Inhalt