Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Carbon Gels for Electrochemical Applications

Authors : Ana Arenillas, J. Angel Menéndez, Gudrun Reichenauer, Alain Celzard, Vanessa Fierro, Francisco José Maldonado Hodar, Esther Bailόn-Garcia, Nathalie Job

Published in: Organic and Carbon Gels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to their conductivity and adjustable pore texture, carbon gels have been considered as alternative materials to activated carbons, graphite, and carbon blacks in electrochemical applications such as electrochemical double-layer supercapacitors, lithium (or sodium) ion batteries, and proton exchange membrane fuel cells. This chapter reviews the use of carbon gels with tailored pore texture as electrode materials for the three applications. In each case, the advantages and drawbacks are identified and discussed, especially regarding the processing of carbon gel materials into composite electrodes, i.e., layers made from a powdery carbon and a binder. Like in catalysis processes, carbon gels may give quite interesting properties to the final electrochemical device, provided their features are properly tuned and the electrode processing is mastered. Indeed, pore texture adjustment often leads to decreasing mass-transport issues, and the possibility to modify the surface chemistry is an asset towards electrode/electrolyte interface optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)CrossRef E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)CrossRef
2.
go back to reference J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014)CrossRef J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014)CrossRef
3.
go back to reference K.-X. Wang, X.-H. Li, J.-S. Chen, Surface and interface engineering of electrode materials for Lithium-ion batteries. Adv. Mater. 27, 527–545 (2015)CrossRef K.-X. Wang, X.-H. Li, J.-S. Chen, Surface and interface engineering of electrode materials for Lithium-ion batteries. Adv. Mater. 27, 527–545 (2015)CrossRef
4.
go back to reference F. Maillard, N. Job, M. Chatenet, Approaches to synthesize carbon-supported platinum-based electrocatalysts for proton-exchange membrane fuel cells, in New and Future Developments in Catalysis. Batteries, Hydrogen Storage and Fuel Cells, ed. by S. Suib, 1st edn., (Elsevier, Amsterdam, 2013), pp. 407–428. ISBN: 9780444538802CrossRef F. Maillard, N. Job, M. Chatenet, Approaches to synthesize carbon-supported platinum-based electrocatalysts for proton-exchange membrane fuel cells, in New and Future Developments in Catalysis. Batteries, Hydrogen Storage and Fuel Cells, ed. by S. Suib, 1st edn., (Elsevier, Amsterdam, 2013), pp. 407–428. ISBN: 9780444538802CrossRef
5.
go back to reference M. Antonietti, N. Felcher, T.-P. Fellinger, Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol-gel routes. Chem. Mater. 26, 196–210 (2014)CrossRef M. Antonietti, N. Felcher, T.-P. Fellinger, Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol-gel routes. Chem. Mater. 26, 196–210 (2014)CrossRef
6.
go back to reference R. Saliger, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 225, 81–85 (1998)CrossRef R. Saliger, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 225, 81–85 (1998)CrossRef
7.
go back to reference M. Contreras, C. Páez, L. Zubizarreta, A. Léonard, C. Olivera, S. Blacher, J.-P. Pirard, N. Job, A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157–3168 (2010)CrossRef M. Contreras, C. Páez, L. Zubizarreta, A. Léonard, C. Olivera, S. Blacher, J.-P. Pirard, N. Job, A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157–3168 (2010)CrossRef
8.
go back to reference A.M.T. Silva, B.F. Machado, J.L. Figueiredo, J.L. Faria, Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation. Carbon 47, 1670–1679 (2009)CrossRef A.M.T. Silva, B.F. Machado, J.L. Figueiredo, J.L. Faria, Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation. Carbon 47, 1670–1679 (2009)CrossRef
9.
go back to reference D. Salinas-Torres, A.F. Léonard, V. Stergiopoulos, Y. Busby, J.-J. Pireaux, N. Job, Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Micropor. Mesopor. Mat. 258, 190–198 (2018)CrossRef D. Salinas-Torres, A.F. Léonard, V. Stergiopoulos, Y. Busby, J.-J. Pireaux, N. Job, Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Micropor. Mesopor. Mat. 258, 190–198 (2018)CrossRef
10.
go back to reference K.Y. Kang, J.J. Hong, B.I. Lee, J.S. Lee, Enhanced electrochemical capacitance of nitrogen-doped carbon gels synthesized by microwave-assisted polymerization of resorcinol and formaldehyde. Electrochem. Commun. 10, 1105–1108 (2008)CrossRef K.Y. Kang, J.J. Hong, B.I. Lee, J.S. Lee, Enhanced electrochemical capacitance of nitrogen-doped carbon gels synthesized by microwave-assisted polymerization of resorcinol and formaldehyde. Electrochem. Commun. 10, 1105–1108 (2008)CrossRef
11.
go back to reference M.-L. Piedboeuf, A.F. Léonard, K. Traina, N. Job, Influence of the textural parameters of resorcinol-formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf. A Physicochem. Eng. Asp. 471, 124–132 (2015)CrossRef M.-L. Piedboeuf, A.F. Léonard, K. Traina, N. Job, Influence of the textural parameters of resorcinol-formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf. A Physicochem. Eng. Asp. 471, 124–132 (2015)CrossRef
12.
go back to reference N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon 12, 2430–2436 (2006)CrossRef N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon 12, 2430–2436 (2006)CrossRef
13.
go back to reference D. Eskenazi, P. Kreit, J.-P. Pirard, P. Compère, N. Job, Continuous synthesis of porous carbon xerogel beads. AICHE J. 64, 1049–1058 (2018)CrossRef D. Eskenazi, P. Kreit, J.-P. Pirard, P. Compère, N. Job, Continuous synthesis of porous carbon xerogel beads. AICHE J. 64, 1049–1058 (2018)CrossRef
14.
go back to reference K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988) K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988)
15.
go back to reference M.H. Hess, C.R. Herd, Microstructure, morphology and general physical properties, in Carbon Black, ed. by J. B. Donnet, R. C. Bansal, M. J. Wang, (Marcel Dekker, New York, 1993), pp. 89–174 M.H. Hess, C.R. Herd, Microstructure, morphology and general physical properties, in Carbon Black, ed. by J. B. Donnet, R. C. Bansal, M. J. Wang, (Marcel Dekker, New York, 1993), pp. 89–174
16.
go back to reference N. Job, R. Pirard, J. Marien, J.-P. Pirard, Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)CrossRef N. Job, R. Pirard, J. Marien, J.-P. Pirard, Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)CrossRef
17.
go back to reference X. Lu, O. Nilsson, J. Fricke, Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73, 581–584 (1993)CrossRef X. Lu, O. Nilsson, J. Fricke, Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73, 581–584 (1993)CrossRef
18.
go back to reference J. Wang, S.Q. Zhang, J. Shen, Y.Z. Guo, S.M. Attia, B. Zhou, Z.Q. Lai, G.Z. Zheng, Y.S. Gui, Electrical transport properties of carbon aerogels. J. porous Mater. 8, 167–170 (2001) J. Wang, S.Q. Zhang, J. Shen, Y.Z. Guo, S.M. Attia, B. Zhou, Z.Q. Lai, G.Z. Zheng, Y.S. Gui, Electrical transport properties of carbon aerogels. J. porous Mater. 8, 167–170 (2001)
19.
go back to reference R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef
20.
go back to reference A. Celzard, J.F. Marêché, F. Payot, G. Furdin, Electrical conductivity of carbonaceous powders. Carbon 40, 2801–2815 (2002)CrossRef A. Celzard, J.F. Marêché, F. Payot, G. Furdin, Electrical conductivity of carbonaceous powders. Carbon 40, 2801–2815 (2002)CrossRef
21.
go back to reference A.P. Saab, F.H. Garzon, T.A. Zawodzinski, Determination of ionic and electronic resistivities in carbon/polyelectrolyte fuel cell composite electrodes. J. Electrochem. Soc. 149, A1541–A1546 (2002)CrossRef A.P. Saab, F.H. Garzon, T.A. Zawodzinski, Determination of ionic and electronic resistivities in carbon/polyelectrolyte fuel cell composite electrodes. J. Electrochem. Soc. 149, A1541–A1546 (2002)CrossRef
22.
go back to reference Z. Siroma, J. Hagiwara, K. Yasuda, M. Inaba, A. Tasaka, Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode film impregnated with electrolyte. J. Electroanal. Chem. 648, 92–97 (2010)CrossRef Z. Siroma, J. Hagiwara, K. Yasuda, M. Inaba, A. Tasaka, Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode film impregnated with electrolyte. J. Electroanal. Chem. 648, 92–97 (2010)CrossRef
23.
go back to reference M.A. Worsley, T.F. Baumann, Carbon aerogels, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein et al., (Springer, Cham, 2016), pp. 1–36 M.A. Worsley, T.F. Baumann, Carbon aerogels, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein et al., (Springer, Cham, 2016), pp. 1–36
24.
go back to reference M. Haghgoo, A.A. Yousefi, M.J. Zohouriaan Mehr, A.F. Léonard, M.P. Philippe, A. Léonard, N. Job, Correlation between morphology and electrical conductivity of dried and pyrolyzed multi-walled carbon nanotube/resorcinol-formaldehyde xerogel composites. J. Mater. Sci. 20, 6007–6020 (2015)CrossRef M. Haghgoo, A.A. Yousefi, M.J. Zohouriaan Mehr, A.F. Léonard, M.P. Philippe, A. Léonard, N. Job, Correlation between morphology and electrical conductivity of dried and pyrolyzed multi-walled carbon nanotube/resorcinol-formaldehyde xerogel composites. J. Mater. Sci. 20, 6007–6020 (2015)CrossRef
25.
go back to reference E. Frackowiak, Carbon materials for supercapacitor applications. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef E. Frackowiak, Carbon materials for supercapacitor applications. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef
26.
go back to reference F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRef F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRef
27.
go back to reference A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)CrossRef A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)CrossRef
28.
go back to reference P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef
29.
go back to reference K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Béguin, Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287–293 (2004)CrossRef K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Béguin, Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287–293 (2004)CrossRef
30.
go back to reference U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, Carbon aerogels as electrode material in supercapacitors. J. Porous Mater. 4, 281–285 (1997)CrossRef U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, Carbon aerogels as electrode material in supercapacitors. J. Porous Mater. 4, 281–285 (1997)CrossRef
31.
go back to reference H. Pröbstle, R. Saliger, J. Fricke, Electrochemical investigation of carbon aerogels and their activated derivatives. Stud. Surf. Sci. Catal. 128, 371–379 (2000)CrossRef H. Pröbstle, R. Saliger, J. Fricke, Electrochemical investigation of carbon aerogels and their activated derivatives. Stud. Surf. Sci. Catal. 128, 371–379 (2000)CrossRef
32.
go back to reference C. Schmitt, H. Pröbstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285, 277–282 (2001)CrossRef C. Schmitt, H. Pröbstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285, 277–282 (2001)CrossRef
33.
go back to reference W. Li, G. Reichenauer, J. Fricke, Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40, 2955–2959 (2002)CrossRef W. Li, G. Reichenauer, J. Fricke, Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40, 2955–2959 (2002)CrossRef
34.
go back to reference H. Pröbstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels. J. Power Sources 105, 189–194 (2002)CrossRef H. Pröbstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels. J. Power Sources 105, 189–194 (2002)CrossRef
35.
go back to reference H. Pröbstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 10, 213–222 (2003)CrossRef H. Pröbstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 10, 213–222 (2003)CrossRef
36.
go back to reference S.J. Kim, S.H. Wang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40, 725–731 (2005)CrossRef S.J. Kim, S.H. Wang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40, 725–731 (2005)CrossRef
37.
go back to reference J. Li, X. Wang, Y. Wang, Q. Huang, C. Dai, S. Gamboa, P.J. Sebastian, Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J. Non-Cryst. Solids 354, 19–24 (2008)CrossRef J. Li, X. Wang, Y. Wang, Q. Huang, C. Dai, S. Gamboa, P.J. Sebastian, Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J. Non-Cryst. Solids 354, 19–24 (2008)CrossRef
38.
go back to reference A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors – synthesis and properties. Electrochim. Acta 25, 7501–7505 (2010)CrossRef A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors – synthesis and properties. Electrochim. Acta 25, 7501–7505 (2010)CrossRef
39.
go back to reference E.G. Calvo, F. Lufrano, P. Staiti, A. Brigandi, A. Arenillas, J.A. Menéndez, Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources 241, 776–782 (2013)CrossRef E.G. Calvo, F. Lufrano, P. Staiti, A. Brigandi, A. Arenillas, J.A. Menéndez, Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources 241, 776–782 (2013)CrossRef
40.
go back to reference D.-W. Park, N.A. Cañas, M. Schwan, B. Milow, L. Ratke, K.A. Friedrich, A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Curr. Appl. Phys. 16, 658–664 (2016)CrossRef D.-W. Park, N.A. Cañas, M. Schwan, B. Milow, L. Ratke, K.A. Friedrich, A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Curr. Appl. Phys. 16, 658–664 (2016)CrossRef
41.
go back to reference G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitors. Relation between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000)CrossRef G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitors. Relation between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000)CrossRef
42.
go back to reference C. Vix-Guterl, E. Frackowiak, K. Jurewick, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005)CrossRef C. Vix-Guterl, E. Frackowiak, K. Jurewick, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005)CrossRef
43.
go back to reference Y. Zhu, H. Hu, W. Li, X. Zhang, Resorcinol-formaldehyde based porous carbon as electrode material for supercapacitor. Carbon 45, 160–165 (2007)CrossRef Y. Zhu, H. Hu, W. Li, X. Zhang, Resorcinol-formaldehyde based porous carbon as electrode material for supercapacitor. Carbon 45, 160–165 (2007)CrossRef
44.
go back to reference J. Wang, X. Yang, D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, The porous structure of activated carbon aerogels and their effect on electrochemical performance. J. Power Sources 185, 589–594 (2008)CrossRef J. Wang, X. Yang, D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, The porous structure of activated carbon aerogels and their effect on electrochemical performance. J. Power Sources 185, 589–594 (2008)CrossRef
45.
go back to reference C.H.J. Kim, D. Zhao, G. Lee, J. Liu, Strong, machinable carbon aerogel for high performance supercapacitors. Adv. Funct. Mater. 26, 4976–4983 (2016)CrossRef C.H.J. Kim, D. Zhao, G. Lee, J. Liu, Strong, machinable carbon aerogel for high performance supercapacitors. Adv. Funct. Mater. 26, 4976–4983 (2016)CrossRef
46.
go back to reference S. Sepheri, B.B. Garcia, Q. Zhang, G. Gao, Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47, 1436–1443 (2009)CrossRef S. Sepheri, B.B. Garcia, Q. Zhang, G. Gao, Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47, 1436–1443 (2009)CrossRef
47.
go back to reference C. Lin, J.A. Ritter, B.N. Popov, Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels. J. Electrochem. Soc. 146, 3155–3160 (1999)CrossRef C. Lin, J.A. Ritter, B.N. Popov, Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels. J. Electrochem. Soc. 146, 3155–3160 (1999)CrossRef
48.
go back to reference Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Effect of preparation method on electrochemical property of Mn-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 11, 1–5 (2011)CrossRef Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Effect of preparation method on electrochemical property of Mn-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 11, 1–5 (2011)CrossRef
49.
go back to reference K. Anneser, J. Reichstein, S. Braxmeier, G. Reichenauer, Carbon xerogel based electric double layer capacitors with polymer gel electrolytes – improving the performance by adjusting the type of electrolyte and its processing. Electrochim. Acta 278, 196–203 (2018)CrossRef K. Anneser, J. Reichstein, S. Braxmeier, G. Reichenauer, Carbon xerogel based electric double layer capacitors with polymer gel electrolytes – improving the performance by adjusting the type of electrolyte and its processing. Electrochim. Acta 278, 196–203 (2018)CrossRef
50.
go back to reference M. Canal-Rodríguez, J.A. Menéndez, A. Arenillas, Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochim. Acta 218, 28–36 (2018)CrossRef M. Canal-Rodríguez, J.A. Menéndez, A. Arenillas, Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochim. Acta 218, 28–36 (2018)CrossRef
51.
go back to reference G. Ramos-Fernandes, M. Canal-Rodríguez, A. Arenillas, J. Angel Menendez, I. Rodríguez-Pastor, I. Martin-Gullon. Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerrogel supercapacitors. Carbon 126, 456–463 (2018)CrossRef G. Ramos-Fernandes, M. Canal-Rodríguez, A. Arenillas, J. Angel Menendez, I. Rodríguez-Pastor, I. Martin-Gullon. Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerrogel supercapacitors. Carbon 126, 456–463 (2018)CrossRef
52.
go back to reference M.-L.C. Piedboeuf, A.F. Léonard, F.L. Deschamps, N. Job, Carbon xerogels as anodes for lithium-ion batteries: towards a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51, 4358–4370 (2016)CrossRef M.-L.C. Piedboeuf, A.F. Léonard, F.L. Deschamps, N. Job, Carbon xerogels as anodes for lithium-ion batteries: towards a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51, 4358–4370 (2016)CrossRef
53.
go back to reference B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)CrossRef B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)CrossRef
54.
go back to reference C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016)CrossRef C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016)CrossRef
55.
go back to reference S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proeietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRef S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proeietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRef
56.
go back to reference E.J.R. Zanto, J.A. Ritter, B.N. Popov, Sol-gel derived carbon aerogels and xerogels for use as the anode in the lithium ion battery. Proc. Electrochem. Soc. 98, 71–81 (1999) E.J.R. Zanto, J.A. Ritter, B.N. Popov, Sol-gel derived carbon aerogels and xerogels for use as the anode in the lithium ion battery. Proc. Electrochem. Soc. 98, 71–81 (1999)
57.
go back to reference Y. Zhu, X. Xiang, E. Liu, Y. Wu, H. Xie, Z. Wu, Y. Tian, An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater. Res. Bull. 47, 2045–2050 (2012)CrossRef Y. Zhu, X. Xiang, E. Liu, Y. Wu, H. Xie, Z. Wu, Y. Tian, An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater. Res. Bull. 47, 2045–2050 (2012)CrossRef
58.
go back to reference L. Nian-Ping, S. Jun, G. Da-Yong, L. Dong, Z. Xiao-Wei, L. Ya-Jie, Effect of carbon aerogel activation on electrode lithium insertion performance. Acta Phys. -Chim. Sin. 29, 966–972 (2013) L. Nian-Ping, S. Jun, G. Da-Yong, L. Dong, Z. Xiao-Wei, L. Ya-Jie, Effect of carbon aerogel activation on electrode lithium insertion performance. Acta Phys. -Chim. Sin. 29, 966–972 (2013)
59.
go back to reference X. Liu, S. Li, J. Mei, W.-M. Lau, R. Mi, Y. Li, H. Liu, L. Liu, From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2(35), 14429–14438 (2014)CrossRef X. Liu, S. Li, J. Mei, W.-M. Lau, R. Mi, Y. Li, H. Liu, L. Liu, From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2(35), 14429–14438 (2014)CrossRef
60.
go back to reference X. Yuan, Y.-J. Chao, Z.-F. Ma, X. Deng, Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery. Electrochem. Commun. 9, 2591–2595 (2007)CrossRef X. Yuan, Y.-J. Chao, Z.-F. Ma, X. Deng, Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery. Electrochem. Commun. 9, 2591–2595 (2007)CrossRef
61.
go back to reference M. Kakunuri, S. Vennamalla, C.S. Sharma, Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5, 4747–4753 (2015)CrossRef M. Kakunuri, S. Vennamalla, C.S. Sharma, Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5, 4747–4753 (2015)CrossRef
62.
go back to reference M.-L.C. Piedboeuf, A.F. Léonard, F.L. Deschamps, N. Job, Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51, 4358–4370 (2016)CrossRef M.-L.C. Piedboeuf, A.F. Léonard, F.L. Deschamps, N. Job, Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51, 4358–4370 (2016)CrossRef
63.
go back to reference N. Rey-Raap, M.-L.C. Piedboeuf, A. Arenillas, J.A. Menéndez, A.F. Léonard, N. Job, Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Mater. Des. 109, 282–288 (2016)CrossRef N. Rey-Raap, M.-L.C. Piedboeuf, A. Arenillas, J.A. Menéndez, A.F. Léonard, N. Job, Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Mater. Des. 109, 282–288 (2016)CrossRef
64.
go back to reference M.-L.C. Piedboeuf, A.F. Léonard, C. Scherdel, G. Reichenauer, N. Job, How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries? Micropor. Mesopor. Mat. 275, 278–287 (2019)CrossRef M.-L.C. Piedboeuf, A.F. Léonard, C. Scherdel, G. Reichenauer, N. Job, How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries? Micropor. Mesopor. Mat. 275, 278–287 (2019)CrossRef
65.
go back to reference M. Kakunuri, C.S. Sharma, Resorcinol-formaldehyde derived carbon xerogels: a promising anode material for lithium-ion battery. J. Mater. Res. 33, 1074–1087 (2018)CrossRef M. Kakunuri, C.S. Sharma, Resorcinol-formaldehyde derived carbon xerogels: a promising anode material for lithium-ion battery. J. Mater. Res. 33, 1074–1087 (2018)CrossRef
66.
go back to reference L. Zubizarreta, A. Arenillas, J.-P. Pirard, J.J. Pis, N. Job, Tailoring the textural properties of carbon xerogels by chemical activation. Micropor. Mesopor. Mat. 115, 480–490 (2008) L. Zubizarreta, A. Arenillas, J.-P. Pirard, J.J. Pis, N. Job, Tailoring the textural properties of carbon xerogels by chemical activation. Micropor. Mesopor. Mat. 115, 480–490 (2008)
67.
go back to reference A.F. Léonard, M.-L. Piedboeuf, N. Job, Process to prepare an electrode for an electrochemical storage device, Patent WO2017/211555 A1 A.F. Léonard, M.-L. Piedboeuf, N. Job, Process to prepare an electrode for an electrochemical storage device, Patent WO2017/211555 A1
68.
go back to reference G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Hard carbon anodes for Na-ion batteries: toward a practical use. ChemElectroChem 2, 1917–1920 (2015)CrossRef G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Hard carbon anodes for Na-ion batteries: toward a practical use. ChemElectroChem 2, 1917–1920 (2015)CrossRef
69.
go back to reference G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power Sources 318, 41–48 (2016)CrossRef G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power Sources 318, 41–48 (2016)CrossRef
70.
go back to reference E. Irisarri, A. Ponrouch, M.R. Palacin, Hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162, A2476–A2482 (2015)CrossRef E. Irisarri, A. Ponrouch, M.R. Palacin, Hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162, A2476–A2482 (2015)CrossRef
71.
go back to reference C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet, C. Vix-Guterl, Insight on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018)CrossRef C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet, C. Vix-Guterl, Insight on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018)CrossRef
72.
go back to reference A. Beda, P.-L. Taberna, P. Simon, C. Matei Ghimbeu, Hard carbons derived from phenolic resins for Na-ion batteries. Carbon 139, 248–257 (2018)CrossRef A. Beda, P.-L. Taberna, P. Simon, C. Matei Ghimbeu, Hard carbons derived from phenolic resins for Na-ion batteries. Carbon 139, 248–257 (2018)CrossRef
73.
go back to reference M. Wahid, D. Puthusseri, Y. Gawli, N. Sharma, S. Ogale, Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties and storage mechanisms. ChemSusChem 11, 506–526 (2018)CrossRef M. Wahid, D. Puthusseri, Y. Gawli, N. Sharma, S. Ogale, Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties and storage mechanisms. ChemSusChem 11, 506–526 (2018)CrossRef
74.
go back to reference M. Chatenet, N. Job, F. Maillard, Basics of PEMFC including the use of carbon-supported nanoparticles, in New and Future Developments in Catalysis; Catalysis by Nanoparticles, ed. by S. Suib, 1st edn., (Elsevier, Amsterdam, 2013), pp. 401–423. ISBN: 9780444538741 M. Chatenet, N. Job, F. Maillard, Basics of PEMFC including the use of carbon-supported nanoparticles, in New and Future Developments in Catalysis; Catalysis by Nanoparticles, ed. by S. Suib, 1st edn., (Elsevier, Amsterdam, 2013), pp. 401–423. ISBN: 9780444538741
75.
go back to reference H.A. Gasteiger, W. Gu, R. Makharia, M.F. Mathias, B. Sompalli, Beginning-of-life MEA performance - efficiency loss contributions, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, ed. by W. Vielstich, A. Lamm, H. A. Gasteiger, vol. 3, (Wiley, Chichester, UK, 2009) H.A. Gasteiger, W. Gu, R. Makharia, M.F. Mathias, B. Sompalli, Beginning-of-life MEA performance - efficiency loss contributions, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, ed. by W. Vielstich, A. Lamm, H. A. Gasteiger, vol. 3, (Wiley, Chichester, UK, 2009)
76.
go back to reference K. Kinoshita, Particle size effect on oxygen reduction reaction. J. Electrochem. Soc. 137, 845–848 (1990)CrossRef K. Kinoshita, Particle size effect on oxygen reduction reaction. J. Electrochem. Soc. 137, 845–848 (1990)CrossRef
77.
go back to reference G. Kühner, M. Voll, Manufacture of carbon black, in Carbon Black, ed. by J. B. Donnet, R. C. Bansal, M. J. Wang, (Marcel Dekker, New York, 1993), pp. 1–66 G. Kühner, M. Voll, Manufacture of carbon black, in Carbon Black, ed. by J. B. Donnet, R. C. Bansal, M. J. Wang, (Marcel Dekker, New York, 1993), pp. 1–66
78.
go back to reference H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)CrossRef H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)CrossRef
79.
go back to reference J. Marie, S. Berthon-Fabry, P. Achard, M. Chatenet, A. Pradourat, E. Chainet, Highly dispersed platinum on carbon aerogel as supported catalysts for PEM fuel cell electrodes : comparison of two different synthesis paths. J. Non-Cryst. Solids 350, 88–96 (2004)CrossRef J. Marie, S. Berthon-Fabry, P. Achard, M. Chatenet, A. Pradourat, E. Chainet, Highly dispersed platinum on carbon aerogel as supported catalysts for PEM fuel cell electrodes : comparison of two different synthesis paths. J. Non-Cryst. Solids 350, 88–96 (2004)CrossRef
80.
go back to reference C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, M. Mastragostino, Cryo- and xerogel carbon supported PtRu for DMFC anodes. J. Power Sources 172, 578–586 (2007)CrossRef C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, M. Mastragostino, Cryo- and xerogel carbon supported PtRu for DMFC anodes. J. Power Sources 172, 578–586 (2007)CrossRef
81.
go back to reference N. Job, J. Marie, S. Lambert, S. Berthon-Fabry, P. Achard, Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers. Manag. 49, 2461–2470 (2008)CrossRef N. Job, J. Marie, S. Lambert, S. Berthon-Fabry, P. Achard, Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers. Manag. 49, 2461–2470 (2008)CrossRef
82.
go back to reference J. Marie, R. Chenitz, M. Chatenet, S. Berthon-Fabry, N. Cornet, P. Achard, Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: experimental study of the mass-transport losses. J. Power Sources 190, 423–434 (2009)CrossRef J. Marie, R. Chenitz, M. Chatenet, S. Berthon-Fabry, N. Cornet, P. Achard, Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: experimental study of the mass-transport losses. J. Power Sources 190, 423–434 (2009)CrossRef
83.
go back to reference C. Alegre, L. Cavillo, R. Moliner, J.A. González-Expósito, O. Guillén-Villafuerte, M.V. Martínez-Huerta, E. Pastor, M.J. Lázaro, Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. J. Power Sources 196, 4226–4235 (2011)CrossRef C. Alegre, L. Cavillo, R. Moliner, J.A. González-Expósito, O. Guillén-Villafuerte, M.V. Martínez-Huerta, E. Pastor, M.J. Lázaro, Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. J. Power Sources 196, 4226–4235 (2011)CrossRef
84.
go back to reference M. Ouattara-Brigaudet, S. Berthon-Fabry, C. Beauger, M. Chatenet, N. Job, M. Sennour, P. Achard, Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behaviour in a proton exchange membrane fuel cell cathode. Int. J. Hydrog. Energy 37, 9742–9757 (2012)CrossRef M. Ouattara-Brigaudet, S. Berthon-Fabry, C. Beauger, M. Chatenet, N. Job, M. Sennour, P. Achard, Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behaviour in a proton exchange membrane fuel cell cathode. Int. J. Hydrog. Energy 37, 9742–9757 (2012)CrossRef
85.
go back to reference C. Alegre, M.E. Galvez, R. Moliner, V. Baglio, A.S. Arico, M.J. Lazaro, Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B 147, 947–957 (2014)CrossRef C. Alegre, M.E. Galvez, R. Moliner, V. Baglio, A.S. Arico, M.J. Lazaro, Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B 147, 947–957 (2014)CrossRef
86.
go back to reference C. Alegre, D. Sebastian, M.E. Galvez, R. Moliner, M.J. Lazaro, Sulfurized carbon xerogels as Pt supports with enhanced activity for fuel cell applications. Appl. Catal. B 192, 260–267 (2016)CrossRef C. Alegre, D. Sebastian, M.E. Galvez, R. Moliner, M.J. Lazaro, Sulfurized carbon xerogels as Pt supports with enhanced activity for fuel cell applications. Appl. Catal. B 192, 260–267 (2016)CrossRef
87.
go back to reference C. Alegre, D. Sebastián, M.E. Gálvez, E. Baquedano, R. Moliner, A. Aricó, V. Baglio, M.J. Lázaro, N-doped carbon xerogels as Pt support for the electroreduction of oxygen. Materials 10, 1092 (2017)CrossRef C. Alegre, D. Sebastián, M.E. Gálvez, E. Baquedano, R. Moliner, A. Aricó, V. Baglio, M.J. Lázaro, N-doped carbon xerogels as Pt support for the electroreduction of oxygen. Materials 10, 1092 (2017)CrossRef
88.
go back to reference N. Job, B. Heinrichs, S. Lambert, J.-P. Pirard, J.-F. Colomer, B. Vertruyen, J. Marien, Carbon xerogels as catalyst supports: study of mass transfer. AICHE J. 52, 2663–2676 (2006)CrossRef N. Job, B. Heinrichs, S. Lambert, J.-P. Pirard, J.-F. Colomer, B. Vertruyen, J. Marien, Carbon xerogels as catalyst supports: study of mass transfer. AICHE J. 52, 2663–2676 (2006)CrossRef
89.
go back to reference F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Carbon as catalyst support, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, Hoboken, 2009), pp. 131–155 F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Carbon as catalyst support, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, Hoboken, 2009), pp. 131–155
90.
go back to reference X. Hao, S. Barnes, J.R. Regalbuto, A fundamental study of Pt impregnation of carbon: adsorption equilibrium and particle synthesis. J. Catal. 279, 48–65 (2011)CrossRef X. Hao, S. Barnes, J.R. Regalbuto, A fundamental study of Pt impregnation of carbon: adsorption equilibrium and particle synthesis. J. Catal. 279, 48–65 (2011)CrossRef
91.
go back to reference J.H. Bitter, K.P. de Jong, Preparation of carbon-supported metal catalysts, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, Hoboken, 2009), pp. 157–173 J.H. Bitter, K.P. de Jong, Preparation of carbon-supported metal catalysts, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, Hoboken, 2009), pp. 157–173
92.
go back to reference J.R. Regalbuto, Electrostatic adsorption, in Synthesis of Solid Catalysts, ed. by K. P. de Jong, (Wiley-VCH, Weinheim, 2009), pp. 33–57CrossRef J.R. Regalbuto, Electrostatic adsorption, in Synthesis of Solid Catalysts, ed. by K. P. de Jong, (Wiley-VCH, Weinheim, 2009), pp. 33–57CrossRef
93.
go back to reference E. Billy, F. Maillard, A. Morin, L. Guetaz, F. Emieux, C. Thurier, P. Doppelt, S. Donet, S. Mailley, Impact of ultra-low loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell. J. Power Sources 195, 2737–2746 (2010)CrossRef E. Billy, F. Maillard, A. Morin, L. Guetaz, F. Emieux, C. Thurier, P. Doppelt, S. Donet, S. Mailley, Impact of ultra-low loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell. J. Power Sources 195, 2737–2746 (2010)CrossRef
94.
go back to reference A. Caillard, P. Brault, J. Mathias, C. Charles, R.W. Boswell, T. Sauvage, Deposition and diffusion of platinum nanoparticles in porous carbon assisted by plasma sputtering. Surf. Coat. Technol. 200, 391–394 (2005)CrossRef A. Caillard, P. Brault, J. Mathias, C. Charles, R.W. Boswell, T. Sauvage, Deposition and diffusion of platinum nanoparticles in porous carbon assisted by plasma sputtering. Surf. Coat. Technol. 200, 391–394 (2005)CrossRef
95.
go back to reference A. Caillard, C. Coutanceau, P. Brault, J. Mathias, J.M. Léger, Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). J. Power Sources 162, 66–73 (2006)CrossRef A. Caillard, C. Coutanceau, P. Brault, J. Mathias, J.M. Léger, Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). J. Power Sources 162, 66–73 (2006)CrossRef
96.
go back to reference P. Brault, A. Caillard, A.L. Thomann, J. Mathias, C. Charles, R.W. Boswell, S. Escribano, J. Durand, T. Sauvage, Plasma sputtering deposition of platinu into porous fuel cell electrodes. J. Phys. D 37, 3419–3423 (2004)CrossRef P. Brault, A. Caillard, A.L. Thomann, J. Mathias, C. Charles, R.W. Boswell, S. Escribano, J. Durand, T. Sauvage, Plasma sputtering deposition of platinu into porous fuel cell electrodes. J. Phys. D 37, 3419–3423 (2004)CrossRef
97.
go back to reference D. Merche, T. Dufour, J. Baneton, G. Caldarella, V. Debaille, N. Job, F. Reniers, Fuel cell electrodes from organometallic platinum precursors: an easy atmospheric plasma approach. Plasma Process. Polym. 13, 91–104 (2016)CrossRef D. Merche, T. Dufour, J. Baneton, G. Caldarella, V. Debaille, N. Job, F. Reniers, Fuel cell electrodes from organometallic platinum precursors: an easy atmospheric plasma approach. Plasma Process. Polym. 13, 91–104 (2016)CrossRef
98.
go back to reference J.L. Figueiredo, M.F.R. Pereira, P. Serp, P. Kalck, P.V. Samant, J.B. Fernandes, Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon 44, 2516–2522 (2006)CrossRef J.L. Figueiredo, M.F.R. Pereira, P. Serp, P. Kalck, P.V. Samant, J.B. Fernandes, Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon 44, 2516–2522 (2006)CrossRef
99.
go back to reference A. Zubiaur. Development of new catalysts for proton exchange membrane fuel cells (PEMFCs), Ph.D. Thesis, University of Liège, 2017 A. Zubiaur. Development of new catalysts for proton exchange membrane fuel cells (PEMFCs), Ph.D. Thesis, University of Liège, 2017
100.
go back to reference N. Job, M.F.R. Pereira, S. Lambert, A. Cabiac, G. Delahay, J.-F. Colomer, J. Marien, J.L. Figueiredo, J.-P. Pirard, Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. J. Catal. 240, 160–171 (2006)CrossRef N. Job, M.F.R. Pereira, S. Lambert, A. Cabiac, G. Delahay, J.-F. Colomer, J. Marien, J.L. Figueiredo, J.-P. Pirard, Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. J. Catal. 240, 160–171 (2006)CrossRef
101.
go back to reference J.-P. Brunelle, Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50, 1211–1229 (1978)CrossRef J.-P. Brunelle, Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50, 1211–1229 (1978)CrossRef
102.
go back to reference J.R. Regalbuto, Strong electrostatic adsorption of metals onto catalyst support, in Catalyst Preparation: Science and Engineering, ed. by J. R. Regalbuto, (CRC Press, Taylor & Francis Group, Boca Raton, 2007), pp. 297–318 J.R. Regalbuto, Strong electrostatic adsorption of metals onto catalyst support, in Catalyst Preparation: Science and Engineering, ed. by J. R. Regalbuto, (CRC Press, Taylor & Francis Group, Boca Raton, 2007), pp. 297–318
103.
go back to reference J. Park, J.R. Regalbuto, Simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 175, 239 (1995)CrossRef J. Park, J.R. Regalbuto, Simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 175, 239 (1995)CrossRef
104.
go back to reference S. Lambert, N. Job, L. D’Souza, M.F.R. Pereira, R. Pirard, J.L. Figueiredo, B. Heinrichs, J.-P. Pirard, J.R. Regalbuto, Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J. Catal. 261, 23–33 (2009)CrossRef S. Lambert, N. Job, L. D’Souza, M.F.R. Pereira, R. Pirard, J.L. Figueiredo, B. Heinrichs, J.-P. Pirard, J.R. Regalbuto, Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J. Catal. 261, 23–33 (2009)CrossRef
105.
go back to reference N. Job, S. Lambert, M. Chatenet, C.J. Gommes, F. Maillard, S. Berthon-Fabry, J.R. Regalbuto, J.-P. Pirard, Preparation of highly loaded Pt/carbon xerogel catalysts for PEM fuel cells by the strong electrostatic adsorption method. Catal. Today 150, 119–127 (2010)CrossRef N. Job, S. Lambert, M. Chatenet, C.J. Gommes, F. Maillard, S. Berthon-Fabry, J.R. Regalbuto, J.-P. Pirard, Preparation of highly loaded Pt/carbon xerogel catalysts for PEM fuel cells by the strong electrostatic adsorption method. Catal. Today 150, 119–127 (2010)CrossRef
106.
go back to reference A. Zubiaur, M. Chatenet, F. Maillard, S. Lambert, J.-P. Pirard, N. Job, Using the multiple SEA method to synthesize Pt/carbon xerogel electrocatalysts for PEMFC applications. Fuel Cells 14, 343–349 (2014)CrossRef A. Zubiaur, M. Chatenet, F. Maillard, S. Lambert, J.-P. Pirard, N. Job, Using the multiple SEA method to synthesize Pt/carbon xerogel electrocatalysts for PEMFC applications. Fuel Cells 14, 343–349 (2014)CrossRef
107.
go back to reference A. Zubiaur, N. Job, Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications. Appl. Catal. B 225, 364–378 (2018)CrossRef A. Zubiaur, N. Job, Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications. Appl. Catal. B 225, 364–378 (2018)CrossRef
108.
go back to reference X. Zhu, H.-R. Cho, M. Pasupong, J.R. Regalbuto, Charge-enhanced dry impregnation: a simple way to improve the preparation of supported metal catalysts. ACS Catal. 3, 625–630 (2013)CrossRef X. Zhu, H.-R. Cho, M. Pasupong, J.R. Regalbuto, Charge-enhanced dry impregnation: a simple way to improve the preparation of supported metal catalysts. ACS Catal. 3, 625–630 (2013)CrossRef
109.
go back to reference C. Cao, G. Yuang, L. Dubau, F. Maillard, S. Lambert, J.-P. Pirard, N. Job, Highly dispersed Pt/C catalysts prepared by the charge enhanced dry impregnation method. Appl. Catal. B 150-151, 101–106 (2014)CrossRef C. Cao, G. Yuang, L. Dubau, F. Maillard, S. Lambert, J.-P. Pirard, N. Job, Highly dispersed Pt/C catalysts prepared by the charge enhanced dry impregnation method. Appl. Catal. B 150-151, 101–106 (2014)CrossRef
110.
go back to reference N. Job, M. Chatenet, S. Berthon-Fabry, S. Hermans, F. Maillard, Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J. Power Sources 240, 294–305 (2013)CrossRef N. Job, M. Chatenet, S. Berthon-Fabry, S. Hermans, F. Maillard, Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J. Power Sources 240, 294–305 (2013)CrossRef
111.
go back to reference H. Boennemann, G. Khelashvili, Efficient fuel cell catalysts emerging from organometallic chemistry. Appl. Organomet. Chem. 24, 257–268 (2010) H. Boennemann, G. Khelashvili, Efficient fuel cell catalysts emerging from organometallic chemistry. Appl. Organomet. Chem. 24, 257–268 (2010)
112.
go back to reference H. Schulenburg, E. Muller, G. Khelashvili, T. Roser, H. Bonnemann, A. Wokaun, G.G. Scherer, Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. J. Phys. Chem. C 113, 4069–4077 (2009)CrossRef H. Schulenburg, E. Muller, G. Khelashvili, T. Roser, H. Bonnemann, A. Wokaun, G.G. Scherer, Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. J. Phys. Chem. C 113, 4069–4077 (2009)CrossRef
113.
go back to reference T.P. Hoar, J.H. Schulman, Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152, 102–103 (1943)CrossRef T.P. Hoar, J.H. Schulman, Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152, 102–103 (1943)CrossRef
114.
go back to reference J.H. Schulman, W. Stoeckenius, L.M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy. J. Phys. Chem. 63, 1677–1680 (1959)CrossRef J.H. Schulman, W. Stoeckenius, L.M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy. J. Phys. Chem. 63, 1677–1680 (1959)CrossRef
115.
go back to reference C. Coutanceau, P. Urchaga, S. Brimaud, S. Baranton, Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3, 75–87 (2012)CrossRef C. Coutanceau, P. Urchaga, S. Brimaud, S. Baranton, Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3, 75–87 (2012)CrossRef
116.
go back to reference A.M. Pasqualeti, P.-Y. Olu, M. Chatenet, F.H.B. Lima, Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal. 5, 2778–2787 (2015)CrossRef A.M. Pasqualeti, P.-Y. Olu, M. Chatenet, F.H.B. Lima, Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal. 5, 2778–2787 (2015)CrossRef
117.
go back to reference T. Bligaard, J.K. Nørskov, Ligand effect in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007)CrossRef T. Bligaard, J.K. Nørskov, Ligand effect in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007)CrossRef
118.
go back to reference F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185 (2015)CrossRef F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185 (2015)CrossRef
119.
go back to reference N. Job, F. Maillard, J. Marie, S. Berthon-Fabry, J.-P. Pirard, M. Chatenet, Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts - first insights into the influence of the carbon texture on the Pt nanoparticles morphology and catalytic activity. J. Mater. Sci. 44, 6591–6600 (2009)CrossRef N. Job, F. Maillard, J. Marie, S. Berthon-Fabry, J.-P. Pirard, M. Chatenet, Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts - first insights into the influence of the carbon texture on the Pt nanoparticles morphology and catalytic activity. J. Mater. Sci. 44, 6591–6600 (2009)CrossRef
120.
go back to reference J.C. Calderón, N. Mahata, M.F.R. Pereira, J.L. Figueiredo, V.R. Fernandes, C.M. Rangel, L. Calvillo, M.J. Lázaro, E. Pastor, Pt-Ru catalysts supported on carbon xerogels for PEM fuel cells. Int. J. Hydrog. Energy 37, 7200–7211 (2012)CrossRef J.C. Calderón, N. Mahata, M.F.R. Pereira, J.L. Figueiredo, V.R. Fernandes, C.M. Rangel, L. Calvillo, M.J. Lázaro, E. Pastor, Pt-Ru catalysts supported on carbon xerogels for PEM fuel cells. Int. J. Hydrog. Energy 37, 7200–7211 (2012)CrossRef
121.
go back to reference B. Liu, S. Creager, J. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. Power Sources 195, 1812–1820 (2010)CrossRef B. Liu, S. Creager, J. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. Power Sources 195, 1812–1820 (2010)CrossRef
122.
go back to reference C. Alegre, M. Gálvez, R. Moliner, V. Baglio, A. Aricò, M. Lázaro, Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B 147, 947–957 (2014)CrossRef C. Alegre, M. Gálvez, R. Moliner, V. Baglio, A. Aricò, M. Lázaro, Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B 147, 947–957 (2014)CrossRef
123.
go back to reference F. Maillard, P. Simonov, E.R. Savinova, Carbon materials as supports for fuel cell electrocatalysts, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, New York, 2009), pp. 429–481 F. Maillard, P. Simonov, E.R. Savinova, Carbon materials as supports for fuel cell electrocatalysts, in Carbon Materials for Catalysis, ed. by P. Serp, J. L. Figueiredo, (Wiley, New York, 2009), pp. 429–481
124.
go back to reference P.W. Li, T. Zhang, Q.M. Wang, L. Schaefer, M.K. Chyu, The performance of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. J. Power Sources 114, 63–69 (2003)CrossRef P.W. Li, T. Zhang, Q.M. Wang, L. Schaefer, M.K. Chyu, The performance of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. J. Power Sources 114, 63–69 (2003)CrossRef
125.
go back to reference J. Marie, S. Berthon-Fabry, M. Chatenet, E. Chainet, R. Pirard, N. Cornet, P. Achard, Platinum supported on resorcinol-formaldehyde based carbon aerogels for PEMFC electrodes: influence of the carbon support on electrocatalytic properties. J. Appl. Electrochem. 37, 147–153 (2007)CrossRef J. Marie, S. Berthon-Fabry, M. Chatenet, E. Chainet, R. Pirard, N. Cornet, P. Achard, Platinum supported on resorcinol-formaldehyde based carbon aerogels for PEMFC electrodes: influence of the carbon support on electrocatalytic properties. J. Appl. Electrochem. 37, 147–153 (2007)CrossRef
126.
go back to reference M. Ouattara-Brigaudet, S. Berthon-Fabry, S. Beauger, P. Achard, Correlations between the catalytic layer composition, the relative humidity and the performance of PEMFC carbon aerogel based membrane electrode assemblies. Int. J. Hydrog. Energy 39, 1420–1429 (2014)CrossRef M. Ouattara-Brigaudet, S. Berthon-Fabry, S. Beauger, P. Achard, Correlations between the catalytic layer composition, the relative humidity and the performance of PEMFC carbon aerogel based membrane electrode assemblies. Int. J. Hydrog. Energy 39, 1420–1429 (2014)CrossRef
127.
go back to reference L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, Carbon corrrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane-electrode assemblies. ACS Catal. 4, 2258–2267 (2014)CrossRef L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, Carbon corrrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane-electrode assemblies. ACS Catal. 4, 2258–2267 (2014)CrossRef
128.
go back to reference K. Artyushkova, S. Pylypenko, M. Dowlapalli, P. Atanassov, Structure-to-property relationships in fuel cell catalyst supports: correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. J. Power Sources 214, 303–313 (2012)CrossRef K. Artyushkova, S. Pylypenko, M. Dowlapalli, P. Atanassov, Structure-to-property relationships in fuel cell catalyst supports: correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. J. Power Sources 214, 303–313 (2012)CrossRef
129.
go back to reference K. Gallagher, R. Darling, T. Fuller, Carbon-support corrosion mechanisms and models, In: Handbook of Fuel Cells - Fundamentals, Technology and Applications (Wiley, Chichester, UK, 2009), Vol 6 K. Gallagher, R. Darling, T. Fuller, Carbon-support corrosion mechanisms and models, In: Handbook of Fuel Cells - Fundamentals, Technology and Applications (Wiley, Chichester, UK, 2009), Vol 6
130.
go back to reference L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 5, 2184–2194 (2015)CrossRef L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 5, 2184–2194 (2015)CrossRef
131.
go back to reference T. Asset, N. Job, Y. Busby, A. Crisci, V. Martin, V. Stergiopoulos, C. Bonnaud, A. Serov, P. Atanassov, R. Chattot, L. Dubau, F. Maillard, Porous hollow PtNi/C electrocatalysts: carbon support considerations to meet performance and stability requirements. ACS Catal. 8, 893–903 (2018)CrossRef T. Asset, N. Job, Y. Busby, A. Crisci, V. Martin, V. Stergiopoulos, C. Bonnaud, A. Serov, P. Atanassov, R. Chattot, L. Dubau, F. Maillard, Porous hollow PtNi/C electrocatalysts: carbon support considerations to meet performance and stability requirements. ACS Catal. 8, 893–903 (2018)CrossRef
132.
go back to reference S. Berthon-Fabry, L. Dubau, Y. Ahmad, K. Guérin, M. Chatenet, First insight into fluorinated Pt/carbon aerogels as more corrosion-resistant electrocatalysts for proton exchange membrane fuel cell cathodes. Electrocatalysis 6, 521–533 (2015)CrossRef S. Berthon-Fabry, L. Dubau, Y. Ahmad, K. Guérin, M. Chatenet, First insight into fluorinated Pt/carbon aerogels as more corrosion-resistant electrocatalysts for proton exchange membrane fuel cell cathodes. Electrocatalysis 6, 521–533 (2015)CrossRef
133.
go back to reference N. Job, S. Berthon-Fabry, M. Chatenet, J. Marie, M. Brigaudet, J.-P. Pirard, Nanostructured carbons as catalyst supports for PEM fuel cell electrodes. Top. Catal. 52, 2117–2122 (2009)CrossRef N. Job, S. Berthon-Fabry, M. Chatenet, J. Marie, M. Brigaudet, J.-P. Pirard, Nanostructured carbons as catalyst supports for PEM fuel cell electrodes. Top. Catal. 52, 2117–2122 (2009)CrossRef
Metadata
Title
Carbon Gels for Electrochemical Applications
Authors
Ana Arenillas
J. Angel Menéndez
Gudrun Reichenauer
Alain Celzard
Vanessa Fierro
Francisco José Maldonado Hodar
Esther Bailόn-Garcia
Nathalie Job
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13897-4_5

Premium Partners