Skip to main content
Top
Published in: Advances in Manufacturing 1/2013

01-03-2013

Carbon nanotubes for electronics manufacturing and packaging: from growth to integration

Authors: Johan Liu, Di Jiang, Yifeng Fu, Teng Wang

Published in: Advances in Manufacturing | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) possess excellent electrical, thermal and mechanical properties. They are light in weight yet stronger than most of the other materials. They can be made both highly conductive and semi-conductive. They can be made from nano-sized small catalyst particles and extend to tens of millimeters long. Since CNTs emerged as a hot topic in the early 1990s, numerous research efforts have been spent on the study of the various properties of this new material. CNTs have been proposed as alternative materials of potential excellence in a lot of applications such as electronics, chemical sensors, mechanical sensors/actuators and composite materials, etc. This paper reviews the use of CNTs particularly in electronics manufacturing and packaging field. The progresses of three most important applications, including CNT-based thermal interface materials, CNT-based interconnections and CNT-based cooling devices are reviewed. The growth and post-growth processing of CNTs for specific applications are introduced and the tailoring of CNTs properties, i.e., electrical resistivity, thermal conductivity and strength, etc., is discussed with regard to specific application requirement. As the semiconductor industry is still driven by the need of getting smaller and faster, CNTs and the related composite systems as emerging new materials are likely to provide the solution to the future challenges as we make more and more complex electronics devices and systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Prasek J, Drbohlavova J, Chomoucka J et al (2011) Methods for carbon nanotubes synthesis: review. J Mater Chem 21(40):15872–15884CrossRef Prasek J, Drbohlavova J, Chomoucka J et al (2011) Methods for carbon nanotubes synthesis: review. J Mater Chem 21(40):15872–15884CrossRef
3.
go back to reference Zhao X, Ohkohchi M, Wang M et al (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 35(6):775–781CrossRef Zhao X, Ohkohchi M, Wang M et al (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 35(6):775–781CrossRef
4.
go back to reference Shimotani K, Anazawa K, Watanabe H et al (2001) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys A Mater Sci Process 73(4):451–454CrossRef Shimotani K, Anazawa K, Watanabe H et al (2001) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys A Mater Sci Process 73(4):451–454CrossRef
6.
go back to reference Guo T, Nikolaev P, Thess A et al (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243(1/2):49–54CrossRef Guo T, Nikolaev P, Thess A et al (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243(1/2):49–54CrossRef
7.
go back to reference Scott CD, Arepalli S, Nikolaev P et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72(5):573–580CrossRef Scott CD, Arepalli S, Nikolaev P et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72(5):573–580CrossRef
8.
go back to reference Thess A, Lee R, Nikolaev P et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRef Thess A, Lee R, Nikolaev P et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRef
9.
go back to reference Cheng HM, Li F, Su G et al (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72(25):3282–3284CrossRef Cheng HM, Li F, Su G et al (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72(25):3282–3284CrossRef
10.
go back to reference Danafar F, Fakhru’l-Razi A, Salleh MAM et al (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes: a review. Chem Eng J 155(1/2):37–48CrossRef Danafar F, Fakhru’l-Razi A, Salleh MAM et al (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes: a review. Chem Eng J 155(1/2):37–48CrossRef
11.
go back to reference Melechko AV, Merkulov VI, McKnight TE et al (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301CrossRef Melechko AV, Merkulov VI, McKnight TE et al (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301CrossRef
12.
go back to reference Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef
13.
go back to reference Li X, Zhang X, Ci L et al (2008) Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 19(45):455609CrossRef Li X, Zhang X, Ci L et al (2008) Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 19(45):455609CrossRef
14.
go back to reference Huang S, Dai L, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. J Phys Chem B 103(21):4223–4227CrossRef Huang S, Dai L, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. J Phys Chem B 103(21):4223–4227CrossRef
15.
go back to reference Yang J, Dai L, Vaia RA (2003) Multicomponent interposed carbon nanotube micropatterns by region-specific contact transfer and self-assembling. J Phys Chem B 107(45):12387–12390CrossRef Yang J, Dai L, Vaia RA (2003) Multicomponent interposed carbon nanotube micropatterns by region-specific contact transfer and self-assembling. J Phys Chem B 107(45):12387–12390CrossRef
16.
go back to reference Zhang G, Mann D, Zhang L et al (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci USA 102(45):16141–16145CrossRef Zhang G, Mann D, Zhang L et al (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci USA 102(45):16141–16145CrossRef
17.
go back to reference Zhu L, Sun Y, Hess DW et al (2006) Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6(2):243–247CrossRef Zhu L, Sun Y, Hess DW et al (2006) Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6(2):243–247CrossRef
18.
go back to reference Chiu CC, Tsai TY, Tai NH (2006) Field emission properties of carbon nanotube arrays through the pattern transfer process. Nanotechnology 17(12):2840–2844CrossRef Chiu CC, Tsai TY, Tai NH (2006) Field emission properties of carbon nanotube arrays through the pattern transfer process. Nanotechnology 17(12):2840–2844CrossRef
19.
go back to reference Kumar A, Pushparaj VL, Kar S et al (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett 89(16):163120CrossRef Kumar A, Pushparaj VL, Kar S et al (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett 89(16):163120CrossRef
20.
go back to reference Jiang H, Zhu L, Moon KS et al (2007) Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 18(12):125203CrossRef Jiang H, Zhu L, Moon KS et al (2007) Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 18(12):125203CrossRef
21.
go back to reference Wang T, Carlberg B, Jönsson M et al (2007) Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive. Appl Phys Lett 91(9):093123CrossRef Wang T, Carlberg B, Jönsson M et al (2007) Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive. Appl Phys Lett 91(9):093123CrossRef
22.
go back to reference Chai Y, Gong J, Zhang K et al (2007) Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology 18(35):355709CrossRef Chai Y, Gong J, Zhang K et al (2007) Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology 18(35):355709CrossRef
23.
go back to reference Soga I, Kondo D, Yamaguchi Y et al (2008) Carbon nanotube bumps for LSI interconnect. In: Electronic components and technology conference, Lake Buena Vista, FL, USA, 27–30 May 2008 Soga I, Kondo D, Yamaguchi Y et al (2008) Carbon nanotube bumps for LSI interconnect. In: Electronic components and technology conference, Lake Buena Vista, FL, USA, 27–30 May 2008
24.
go back to reference Lin W, Xiu Y, Jiang H (2008) Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotubes. J Am Chem Soc 130(30):9636–9637CrossRef Lin W, Xiu Y, Jiang H (2008) Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotubes. J Am Chem Soc 130(30):9636–9637CrossRef
25.
go back to reference Zhu Y, Lim X, Sim MC et al (2008) Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Nanotechnology 19(32):325304CrossRef Zhu Y, Lim X, Sim MC et al (2008) Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Nanotechnology 19(32):325304CrossRef
26.
go back to reference Sun Y, Zhu L, Jiang H et al (2008) A paradigm of carbon nanotube interconnects in microelectronic packaging. J Electron Mater 37(11):1691–1697CrossRef Sun Y, Zhu L, Jiang H et al (2008) A paradigm of carbon nanotube interconnects in microelectronic packaging. J Electron Mater 37(11):1691–1697CrossRef
27.
go back to reference Johnson R, Bahr D, Richards C et al (2009) Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates. Nanotechnology 20(6):065703CrossRef Johnson R, Bahr D, Richards C et al (2009) Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates. Nanotechnology 20(6):065703CrossRef
28.
go back to reference Hamdan A, Cho J, Johnson R et al (2010) Evaluation of a thermal interface material fabricated using thermocompression bonding of carbon nanotube turf. Nanotechnology 21(1):015702CrossRef Hamdan A, Cho J, Johnson R et al (2010) Evaluation of a thermal interface material fabricated using thermocompression bonding of carbon nanotube turf. Nanotechnology 21(1):015702CrossRef
29.
go back to reference Mathur A, Roy S, McLaughlin J (2010) Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications. J R Soc Interface 7(48):1129–1133CrossRef Mathur A, Roy S, McLaughlin J (2010) Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications. J R Soc Interface 7(48):1129–1133CrossRef
30.
go back to reference Fu Y, Qin Y, Wang T et al (2010) Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv Mater 22(44):5039–5042CrossRef Fu Y, Qin Y, Wang T et al (2010) Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv Mater 22(44):5039–5042CrossRef
31.
go back to reference Chen M, Song X, Gan Z et al (2011) Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology 22(34):345704CrossRef Chen M, Song X, Gan Z et al (2011) Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology 22(34):345704CrossRef
32.
go back to reference Wang T, Jiang D, Chen S et al (2012) Formation of three-dimensional carbon nanotube structures by controllable vapor densification. Mater Lett 78:184–187CrossRef Wang T, Jiang D, Chen S et al (2012) Formation of three-dimensional carbon nanotube structures by controllable vapor densification. Mater Lett 78:184–187CrossRef
33.
go back to reference Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81(2):223–240CrossRef Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81(2):223–240CrossRef
34.
go back to reference Futaba DN, Miyake K, Murata K et al (2009) Dual porosity single-walled carbon nanotube material. Nano Lett 9(9):3302–3307CrossRef Futaba DN, Miyake K, Murata K et al (2009) Dual porosity single-walled carbon nanotube material. Nano Lett 9(9):3302–3307CrossRef
35.
go back to reference Lau KKS, Bico J, Teo KBK et al (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705CrossRef Lau KKS, Bico J, Teo KBK et al (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705CrossRef
36.
go back to reference Liu H, Li S, Zhai J et al (2004) Self-assembly of large-scale micro-patterns on aligned carbon nanotube films. Angew Chem Int Ed 43(9):1146–1149CrossRef Liu H, Li S, Zhai J et al (2004) Self-assembly of large-scale micro-patterns on aligned carbon nanotube films. Angew Chem Int Ed 43(9):1146–1149CrossRef
37.
go back to reference Futaba DN, Hata K, Yamada T et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994CrossRef Futaba DN, Hata K, Yamada T et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994CrossRef
38.
go back to reference Chakrapani N, Wei B, Carrillo A et al (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci USA 101(12):4009–4012CrossRef Chakrapani N, Wei B, Carrillo A et al (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci USA 101(12):4009–4012CrossRef
39.
go back to reference Correa-Duarte MA, Wagner N, Rojas-Chapana J et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4(11):2233–2236CrossRef Correa-Duarte MA, Wagner N, Rojas-Chapana J et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4(11):2233–2236CrossRef
40.
go back to reference García EJ, Hart AJ, Wardle BL et al (2007) Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18(16):165602CrossRef García EJ, Hart AJ, Wardle BL et al (2007) Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18(16):165602CrossRef
41.
go back to reference Liu Z, Bajwa N, Ci L et al (2007) Densification of carbon nanotube bundles for interconnect application. In: International interconnect technology conference (IITC), Burlingame, CA, 4–6 June 2007 Liu Z, Bajwa N, Ci L et al (2007) Densification of carbon nanotube bundles for interconnect application. In: International interconnect technology conference (IITC), Burlingame, CA, 4–6 June 2007
42.
go back to reference Liu Z, Ci L, Kar S et al (2009) Fabrication and electrical characterization of densified carbon nanotube micropillars for IC interconnection. IEEE Trans Nanotechnol 8(2):196–203CrossRef Liu Z, Ci L, Kar S et al (2009) Fabrication and electrical characterization of densified carbon nanotube micropillars for IC interconnection. IEEE Trans Nanotechnol 8(2):196–203CrossRef
43.
go back to reference De Volder M, Tawfick SH, Park SJ et al (2010) Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv Mater 22(39):4384–4389CrossRef De Volder M, Tawfick SH, Park SJ et al (2010) Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv Mater 22(39):4384–4389CrossRef
44.
go back to reference Liu G, Zhao Y, Deng K et al (2008) Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett 8(4):1071–1075CrossRef Liu G, Zhao Y, Deng K et al (2008) Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett 8(4):1071–1075CrossRef
45.
go back to reference Tawfick S, O’Brien K, Hart A (2009) Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Small 5(21):2467–2473CrossRef Tawfick S, O’Brien K, Hart A (2009) Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Small 5(21):2467–2473CrossRef
46.
go back to reference Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27(5):338–340CrossRef Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27(5):338–340CrossRef
47.
go back to reference Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28(2):135–138CrossRef Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28(2):135–138CrossRef
48.
go back to reference Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574–2582CrossRef Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574–2582CrossRef
49.
go back to reference Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144CrossRef Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144CrossRef
50.
go back to reference Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69(3):507–561CrossRef Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69(3):507–561CrossRef
51.
go back to reference Li H, Banerjee K (2009) High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans Electron Devices 56(10):2202–2214CrossRef Li H, Banerjee K (2009) High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans Electron Devices 56(10):2202–2214CrossRef
52.
go back to reference Kajiura H, Nandyala A, Bezryadin A (2005) Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes. Carbon 43(6):1317–1319CrossRef Kajiura H, Nandyala A, Bezryadin A (2005) Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes. Carbon 43(6):1317–1319CrossRef
53.
go back to reference Ngo Q, Petranovic D, Krishnan S et al (2004) Electron transport through metal-multiwall carbon nanotube interfaces. IEEE Trans Nanotechnol 3(2):311–317CrossRef Ngo Q, Petranovic D, Krishnan S et al (2004) Electron transport through metal-multiwall carbon nanotube interfaces. IEEE Trans Nanotechnol 3(2):311–317CrossRef
54.
go back to reference Liu Z, Ci L, Bajwa N et al (2008) Benchmarking of metal-to-carbon nanotube side contact resistance. In: International interconnect technology conference (IITC), Burlingame, CA, 1–4 June 2008 Liu Z, Ci L, Bajwa N et al (2008) Benchmarking of metal-to-carbon nanotube side contact resistance. In: International interconnect technology conference (IITC), Burlingame, CA, 1–4 June 2008
55.
go back to reference Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transf 52(15/16):3490–3503CrossRef Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transf 52(15/16):3490–3503CrossRef
56.
go back to reference Lee JO, Park C, Kim JJ et al (2000) Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. J Phys D Appl Phys 33(16):1953–1956CrossRef Lee JO, Park C, Kim JJ et al (2000) Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. J Phys D Appl Phys 33(16):1953–1956CrossRef
57.
go back to reference Wang T, Jeppson K, Ye L et al (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small 7(16):2313–2317CrossRef Wang T, Jeppson K, Ye L et al (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small 7(16):2313–2317CrossRef
58.
go back to reference Wang T, Chen S, Jiang D et al (2012) Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33(3):420–422CrossRef Wang T, Chen S, Jiang D et al (2012) Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33(3):420–422CrossRef
59.
go back to reference Chaowasakoo T, Ng TH, Songninluck J et al (2009) Indium solder as a thermal interface material using fluxless bonding technology. In: 25th Annual IEEE semiconductor thermal measurement and management symposium, San Jose, CA, USA, 15–19 March 2009 Chaowasakoo T, Ng TH, Songninluck J et al (2009) Indium solder as a thermal interface material using fluxless bonding technology. In: 25th Annual IEEE semiconductor thermal measurement and management symposium, San Jose, CA, USA, 15–19 March 2009
60.
go back to reference Deppisch C, Fitzgerald T, Raman A et al (2006) The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging. J Management 58(6):67–74 Deppisch C, Fitzgerald T, Raman A et al (2006) The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging. J Management 58(6):67–74
61.
go back to reference Carlberg B, Ye LL, Liu J (2012) Polymer-metal nanofibrous composite for thermal management of microsystems. Mater Lett 75:229–232CrossRef Carlberg B, Ye LL, Liu J (2012) Polymer-metal nanofibrous composite for thermal management of microsystems. Mater Lett 75:229–232CrossRef
62.
go back to reference Carlberg B, Wang T, Fu Y et al (2008) Nanostructured polymer-metal composite for thermal interface material applications. In: The 58th Electronic components and technology conference, Lake Buena Vista, FL, 27–30 May 2008 Carlberg B, Wang T, Fu Y et al (2008) Nanostructured polymer-metal composite for thermal interface material applications. In: The 58th Electronic components and technology conference, Lake Buena Vista, FL, 27–30 May 2008
63.
go back to reference Hu Z, Carlberg B, Yue C et al (2009) Modeling of nanostructured polymer-metal composite for thermal interface material applications. In: International conference on electronic packaging technology high density Packaging, Beijing, China, 10–13 Aug 2009 Hu Z, Carlberg B, Yue C et al (2009) Modeling of nanostructured polymer-metal composite for thermal interface material applications. In: International conference on electronic packaging technology high density Packaging, Beijing, China, 10–13 Aug 2009
64.
go back to reference Ivanov I, Puretzky A, Eres G et al (2006) Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl Phys Lett 89(22):223110CrossRef Ivanov I, Puretzky A, Eres G et al (2006) Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl Phys Lett 89(22):223110CrossRef
65.
go back to reference Biercuk M, Llaguno MC, Radosavljevic M et al (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef Biercuk M, Llaguno MC, Radosavljevic M et al (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef
66.
go back to reference Choi ES, Brooks JS, Eaton DL et al (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039CrossRef Choi ES, Brooks JS, Eaton DL et al (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039CrossRef
67.
go back to reference Hu X, Jiang L, Goodson KE (2004) Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions. In: The ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems, Las Vegas, NV, USA, 1–4 June 2004 Hu X, Jiang L, Goodson KE (2004) Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions. In: The ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems, Las Vegas, NV, USA, 1–4 June 2004
68.
go back to reference Huang H, Liu CH, Wu Y et al (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656CrossRef Huang H, Liu CH, Wu Y et al (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656CrossRef
69.
go back to reference Shaikh S, Li L, Lafdi K et al (2007) Thermal conductivity of an aligned carbon nanotube array. Carbon 45(13):2608–2613CrossRef Shaikh S, Li L, Lafdi K et al (2007) Thermal conductivity of an aligned carbon nanotube array. Carbon 45(13):2608–2613CrossRef
70.
go back to reference Hone J, Llaguno MC, Nemes NM et al (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77(5):666–668CrossRef Hone J, Llaguno MC, Nemes NM et al (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77(5):666–668CrossRef
71.
go back to reference Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 66(16):165440CrossRef Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 66(16):165440CrossRef
72.
go back to reference Hu X, Padilla A, Xu J et al (2006) 3-Omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Transfer 128:1109–1113CrossRef Hu X, Padilla A, Xu J et al (2006) 3-Omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Transfer 128:1109–1113CrossRef
73.
go back to reference Tong T, Zhao Y, Delzeit L et al (2007) Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol 30(1):92–100CrossRef Tong T, Zhao Y, Delzeit L et al (2007) Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol 30(1):92–100CrossRef
74.
go back to reference Cross R, Cola BA, Fisher T et al (2010) A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology 21(44):445705CrossRef Cross R, Cola BA, Fisher T et al (2010) A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology 21(44):445705CrossRef
75.
go back to reference Zhang K, Chai Y, Yuen MMF et al (2008) Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19(21):215706CrossRef Zhang K, Chai Y, Yuen MMF et al (2008) Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19(21):215706CrossRef
76.
go back to reference Barako MT, Gao Y, Marconnet AM et al (2012) Solder-bonded carbon nanotube thermal interface materials. In: 13th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm), San Diego, CA, USA, 30 May–1 June 2012 Barako MT, Gao Y, Marconnet AM et al (2012) Solder-bonded carbon nanotube thermal interface materials. In: 13th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm), San Diego, CA, USA, 30 May–1 June 2012
77.
go back to reference Lin W, Zhang R, Moon KS et al (2010) Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 48(1):107–113CrossRef Lin W, Zhang R, Moon KS et al (2010) Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 48(1):107–113CrossRef
78.
go back to reference Fu Y, Carlberg B, Lindahl N et al (2012) Templated growth of covalently bonded three-dimensional carbon nanotube networks originated from graphene. Adv Mater 24(12):1576–1581CrossRef Fu Y, Carlberg B, Lindahl N et al (2012) Templated growth of covalently bonded three-dimensional carbon nanotube networks originated from graphene. Adv Mater 24(12):1576–1581CrossRef
79.
go back to reference Mo Z, Anderson J, Liu J (2004) Integrating nano carbontubes with microchannel cooler. Proceeding of the sixth IEEE CPMT conference on high density microsystem design and packaging and component failure analysis, Shanghai, China, 30 June–3 July 2004 Mo Z, Anderson J, Liu J (2004) Integrating nano carbontubes with microchannel cooler. Proceeding of the sixth IEEE CPMT conference on high density microsystem design and packaging and component failure analysis, Shanghai, China, 30 June–3 July 2004
80.
go back to reference Mo Z, Morjan R, Anderson J et al (2005) Integrated nanotube microcooler for microelectronics applications. Proceedings of electronic components and technology conference, Lake Buena Vista, FL, USA, 31 May–3 June 2005 Mo Z, Morjan R, Anderson J et al (2005) Integrated nanotube microcooler for microelectronics applications. Proceedings of electronic components and technology conference, Lake Buena Vista, FL, USA, 31 May–3 June 2005
81.
go back to reference Ekstrand L, Mo Z, Zhang Y et al (2005) Modelling of carbon nanotubes as heat sink fins in microchannels for microelectronics cooling. In: The 5th international conference on polymers and adhesives in microelectronics and photonics, polytronic, Wroclaw, Poland, 23–26 Oct 2005 Ekstrand L, Mo Z, Zhang Y et al (2005) Modelling of carbon nanotubes as heat sink fins in microchannels for microelectronics cooling. In: The 5th international conference on polymers and adhesives in microelectronics and photonics, polytronic, Wroclaw, Poland, 23–26 Oct 2005
82.
go back to reference Wang T, Jonsson M, Nystrom E et al (2006) Development and characterization of microcoolers using carbon nanotubes. In: Electronics system integration technology conference, Dresden, Germany, 5–7 Sept 2006 Wang T, Jonsson M, Nystrom E et al (2006) Development and characterization of microcoolers using carbon nanotubes. In: Electronics system integration technology conference, Dresden, Germany, 5–7 Sept 2006
83.
go back to reference Kordás K, Tóth G, Moilanen P et al (2007) Chip cooling with integrated carbon nanotube microfin architectures. Appl Phys Lett 90(12):123105CrossRef Kordás K, Tóth G, Moilanen P et al (2007) Chip cooling with integrated carbon nanotube microfin architectures. Appl Phys Lett 90(12):123105CrossRef
84.
go back to reference Zhong X, Fan Y, Liu J et al (2007) A study of CFD simulation for on-chip cooling with 2D CNT micro-fin array. In: International symposium on high density packaging and microsystem integration, Shanghai, China, 26–28 June 2007 Zhong X, Fan Y, Liu J et al (2007) A study of CFD simulation for on-chip cooling with 2D CNT micro-fin array. In: International symposium on high density packaging and microsystem integration, Shanghai, China, 26–28 June 2007
85.
go back to reference Zhong X, Wang T, Liu J et al (2006) Computational fluid dynamics simulation for on-chip cooling with carbon nanotube micro-fin architectures. In: International conference on electronic materials and packaging, Hong Kong, China, 11–14 Dec 2006 Zhong X, Wang T, Liu J et al (2006) Computational fluid dynamics simulation for on-chip cooling with carbon nanotube micro-fin architectures. In: International conference on electronic materials and packaging, Hong Kong, China, 11–14 Dec 2006
86.
go back to reference Hu M, Shenogin S, Keblinski P et al (2007) Air flow through carbon nanotube arrays. Appl Phys Lett 91(13):131905CrossRef Hu M, Shenogin S, Keblinski P et al (2007) Air flow through carbon nanotube arrays. Appl Phys Lett 91(13):131905CrossRef
87.
go back to reference Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26(17/18):2457–2463CrossRef Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26(17/18):2457–2463CrossRef
88.
go back to reference Fu Y, Nabiollahi N, Wang T et al (2012) A complete carbon-nano- tube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 23(4):045304CrossRef Fu Y, Nabiollahi N, Wang T et al (2012) A complete carbon-nano- tube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 23(4):045304CrossRef
89.
go back to reference Fu Y, Wang T, Jonsson O et al (2010) Application of through silicon via technology for in situ temperature monitoring on thermal interfaces. J Micromech Microeng 20(2):025027CrossRef Fu Y, Wang T, Jonsson O et al (2010) Application of through silicon via technology for in situ temperature monitoring on thermal interfaces. J Micromech Microeng 20(2):025027CrossRef
91.
go back to reference Viswanath R, Wakharkar V, Watwe A et al (2000) Thermal performance challenges from silicon to systems. Intel Technology Journal Viswanath R, Wakharkar V, Watwe A et al (2000) Thermal performance challenges from silicon to systems. Intel Technology Journal
92.
go back to reference Fu Y, Wang T, Liu J et al (2009) Carbon nanotubes as cooling fins in microelectronic systems. In: The 9th IEEE conference on nanotechnology, Genoa, Italy, 26–30 July 2009 Fu Y, Wang T, Liu J et al (2009) Carbon nanotubes as cooling fins in microelectronic systems. In: The 9th IEEE conference on nanotechnology, Genoa, Italy, 26–30 July 2009
Metadata
Title
Carbon nanotubes for electronics manufacturing and packaging: from growth to integration
Authors
Johan Liu
Di Jiang
Yifeng Fu
Teng Wang
Publication date
01-03-2013
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 1/2013
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-013-0007-4

Other articles of this Issue 1/2013

Advances in Manufacturing 1/2013 Go to the issue

Premium Partners