Skip to main content
Top
Published in: Cellulose 4/2016

13-06-2016 | Note

Cellulose–solvent interactions from self-diffusion NMR

Authors: Luigi Gentile, Ulf Olsson

Published in: Cellulose | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molecular self-diffusion coefficients were measured in solutions of microcrystalline cellulose (MCC) and dissolving pulp, in 40 wt% aqueous tetrabutylammonium hydroxide (TBAH), using pulsed field gradient stimulated echo NMR. From the cellulose diffusion coefficients, a weight averaged radius of hydration <Rh>w = 6.1 nm for MCC and <Rh>w = 15 nm for pulp were obtained. Water and TBA+ ions show a significantly different dependence on the cellulose concentration, revealing different molecular interactions with the polymer. Water-cellulose are essentially excluded volume. TBA+ ions, on the other hand, bind to cellulose with approximately 1.2 TBA+ ions per glucose unit.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Behrens MA, Holdaway JA, Nosrati P, Olsson U (2016) On the dissolution state of cellulose in aqueous tetrabutylammonium hydroxide solutions. RSC Adv 6:30199–30204. doi:10.1039/C6RA03547G CrossRef Behrens MA, Holdaway JA, Nosrati P, Olsson U (2016) On the dissolution state of cellulose in aqueous tetrabutylammonium hydroxide solutions. RSC Adv 6:30199–30204. doi:10.​1039/​C6RA03547G CrossRef
go back to reference Bolhuis GK, Chowhan ZT (1996) Pharmaceutical powder compaction technology. In: Alderborn G, Nyström C (eds) Materials for direct compaction. Marcel Dekker, New York, pp 419–501 Bolhuis GK, Chowhan ZT (1996) Pharmaceutical powder compaction technology. In: Alderborn G, Nyström C (eds) Materials for direct compaction. Marcel Dekker, New York, pp 419–501
go back to reference De Gennes P-G (1979) Scaling Concepts in polymer physics. Cornell University Press, London De Gennes P-G (1979) Scaling Concepts in polymer physics. Cornell University Press, London
go back to reference Furukawa R, Arauz-Lara JL, Ware BR (1991) Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of Dextran. Macromolecules 24:599–605. doi:10.1021/ma00002a039 CrossRef Furukawa R, Arauz-Lara JL, Ware BR (1991) Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of Dextran. Macromolecules 24:599–605. doi:10.​1021/​ma00002a039 CrossRef
go back to reference Gustavsson S, Alves L, Lindman B, Topgaard D (2014) Polarization transfer solid-state NMR: a new method for studying cellulose dissolution. RSC Adv 4:31836–31839. doi:10.1039/C4RA04415K CrossRef Gustavsson S, Alves L, Lindman B, Topgaard D (2014) Polarization transfer solid-state NMR: a new method for studying cellulose dissolution. RSC Adv 4:31836–31839. doi:10.​1039/​C4RA04415K CrossRef
go back to reference Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-Ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818. doi:10.1021/jp306829c CrossRef Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-Ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818. doi:10.​1021/​jp306829c CrossRef
go back to reference Kamide K, Yamazaki H, Okajima K, Hikichi K (1985) Stereoregiilarity of polyacrylonitrile by high resolution 13C NMR analysis. Polym J 17:1233–1239CrossRef Kamide K, Yamazaki H, Okajima K, Hikichi K (1985) Stereoregiilarity of polyacrylonitrile by high resolution 13C NMR analysis. Polym J 17:1233–1239CrossRef
go back to reference Kumagai T, Ueno N, Koshiyama J (2015) Tokyo Ohka Kogyo Co., Ltd. Patent US20150160560 Kumagai T, Ueno N, Koshiyama J (2015) Tokyo Ohka Kogyo Co., Ltd. Patent US20150160560
go back to reference Lindman B, Medronho B (2015) The subtleties of dissolution and regeneration of cellulose: breaking and making hydrogen bonds. BioResources 10:3811–3814CrossRef Lindman B, Medronho B (2015) The subtleties of dissolution and regeneration of cellulose: breaking and making hydrogen bonds. BioResources 10:3811–3814CrossRef
go back to reference Lindman B, Puyal MC, Kamenka N, Brun B, Gunnarsson G (1982) Micelle formation of ionic surfactants. Tracer self-diffusion studies and theoretical calculations for sodium p-octylbenzenesulfonate. J Phys Chem 86:1702–1711. doi:10.1021/j100206a045 CrossRef Lindman B, Puyal MC, Kamenka N, Brun B, Gunnarsson G (1982) Micelle formation of ionic surfactants. Tracer self-diffusion studies and theoretical calculations for sodium p-octylbenzenesulfonate. J Phys Chem 86:1702–1711. doi:10.​1021/​j100206a045 CrossRef
go back to reference Medronho B, Romano A, Miguel MG, Stigsson L, Lindman L (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.1007/s10570-011-9644-6 CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman L (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.​1007/​s10570-011-9644-6 CrossRef
go back to reference Nilsson M, Håkansson B, Söderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40:8250–8258. doi:10.1021/ma071302p CrossRef Nilsson M, Håkansson B, Söderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40:8250–8258. doi:10.​1021/​ma071302p CrossRef
go back to reference Nydén M, Söderman O, Karlström G (1999) A PFG NMR self-diffusion investigation of probe diffusion in an Ethyl(hydroxyethyl)cellulose matrix. Macromolecules 32:127–135. doi:10.1021/ma981067y CrossRef Nydén M, Söderman O, Karlström G (1999) A PFG NMR self-diffusion investigation of probe diffusion in an Ethyl(hydroxyethyl)cellulose matrix. Macromolecules 32:127–135. doi:10.​1021/​ma981067y CrossRef
go back to reference Phillies GDJ (2011) Phenomenology of polymer solution dynamics. Cambridge University Press, CambridgeCrossRef Phillies GDJ (2011) Phenomenology of polymer solution dynamics. Cambridge University Press, CambridgeCrossRef
go back to reference Radhi A, Le Anh K, Ries ME, Budtova T (2015) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. J Phys Chem B 119:1633–1640. doi:10.1021/jp5112108 CrossRef Radhi A, Le Anh K, Ries ME, Budtova T (2015) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. J Phys Chem B 119:1633–1640. doi:10.​1021/​jp5112108 CrossRef
go back to reference Ries ME, Radhi A, Keating AS, Parker O, Budtova T (2014) Diffusion of 1-Ethyl-3-Methyl-Imidazolium acetate in glucose, cellobiose, and cellulose solutions. Biomacromolecules 15:609–617. doi:10.1021/bm401652c CrossRef Ries ME, Radhi A, Keating AS, Parker O, Budtova T (2014) Diffusion of 1-Ethyl-3-Methyl-Imidazolium acetate in glucose, cellobiose, and cellulose solutions. Biomacromolecules 15:609–617. doi:10.​1021/​bm401652c CrossRef
go back to reference Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107. doi:10.1021/ma991893m CrossRef Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107. doi:10.​1021/​ma991893m CrossRef
go back to reference Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. doi:10.1021/sc400085a CrossRef Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. doi:10.​1021/​sc400085a CrossRef
go back to reference VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(1465):1472. doi:10.1021/ma00138a009 VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(1465):1472. doi:10.​1021/​ma00138a009
go back to reference Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Hui D, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083. doi:10.1039/C5RA04247J CrossRef Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Hui D, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083. doi:10.​1039/​C5RA04247J CrossRef
go back to reference Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605. doi:10.1039/C1SC00241D CrossRef Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605. doi:10.​1039/​C1SC00241D CrossRef
go back to reference Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.1039/c5cp05744b CrossRef Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.​1039/​c5cp05744b CrossRef
go back to reference Zettl U, Hoffmann ST, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M (2009) Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules 42:9537–9547. doi:10.1021/ma901404g CrossRef Zettl U, Hoffmann ST, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M (2009) Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules 42:9537–9547. doi:10.​1021/​ma901404g CrossRef
Metadata
Title
Cellulose–solvent interactions from self-diffusion NMR
Authors
Luigi Gentile
Ulf Olsson
Publication date
13-06-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0984-0

Other articles of this Issue 4/2016

Cellulose 4/2016 Go to the issue