Skip to main content
Top

2015 | OriginalPaper | Chapter

Centimeter-Range Inductive Radios

Authors : Mehdi Kiani, Maysam Ghovanloo

Published in: Ultra-Low-Power Short-Range Radios

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the fundamental principles of cm-range wireless telemetry through inductive links and provides insight in regards to the methods of analysis, choice of modulation schemes, carrier frequencies, and coil design. After presenting simplified models for the inductance and mutual coupling of conductive loops, the inductive link equivalent network is derived to be used for analysis of inductive data links. Different carrier-based modulation schemes such as amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK) are discussed for near-field simultaneous data and power transmission in different applications such as implantable microelectronic devices (IMDs), radio frequency identification (RFID), and smart cards. Data communication through load-shift keying (LSK) is also discussed followed by presenting the pulse-based schemes for low-power communication. Finally, new pulse-harmonic modulation (PHM) and pulse-delay modulation (PDM) schemes that offer high data rate in IMDs without dissipating much power on the implantable side are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Zhou, E. Greenbaum, Implantable Neural Prostheses 1 (Springer, New York, 2009) D. Zhou, E. Greenbaum, Implantable Neural Prostheses 1 (Springer, New York, 2009)
2.
go back to reference R. Allan, Medtronic sets the pace with implantable electronics. Electron. Des. 51(24), 52–56 (2003) R. Allan, Medtronic sets the pace with implantable electronics. Electron. Des. 51(24), 52–56 (2003)
3.
go back to reference M. Morrel, Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011)CrossRef M. Morrel, Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011)CrossRef
4.
go back to reference R. Fisher, Direct brain stimulation is an effective therapy for epilepsy. Neurology 77, 1220–1221 (2011)CrossRef R. Fisher, Direct brain stimulation is an effective therapy for epilepsy. Neurology 77, 1220–1221 (2011)CrossRef
5.
go back to reference F. Zeng et al., Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)CrossRef F. Zeng et al., Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)CrossRef
6.
go back to reference J. Weiland, M. Humayun, Visual prosthesis. Proc. IEEE 96, 1076–1084 (2008)CrossRef J. Weiland, M. Humayun, Visual prosthesis. Proc. IEEE 96, 1076–1084 (2008)CrossRef
7.
go back to reference K. Chen et al., An integrated 256-channel epiretinal prosthesis. IEEE J. Solid-State Circuits 45(9), 1946–1956 (2010)CrossRef K. Chen et al., An integrated 256-channel epiretinal prosthesis. IEEE J. Solid-State Circuits 45(9), 1946–1956 (2010)CrossRef
8.
go back to reference D.B. Shire et al., Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 56(10), 2502–2511 (2009)CrossRef D.B. Shire et al., Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 56(10), 2502–2511 (2009)CrossRef
9.
go back to reference A. Schwartz et al., Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)CrossRef A. Schwartz et al., Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)CrossRef
10.
go back to reference T. Kuiken et al., Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007)CrossRef T. Kuiken et al., Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007)CrossRef
11.
go back to reference R. Fernandes et al., Artificial vision through neuronal stimulation. Neurosci. Lett. 519, 122–128 (2012)CrossRef R. Fernandes et al., Artificial vision through neuronal stimulation. Neurosci. Lett. 519, 122–128 (2012)CrossRef
12.
go back to reference L. Theogarajan, Strategies for restoring vision to the blind: current and emerging technologies. Neurosci. Lett. 519, 129–133 (2012)CrossRef L. Theogarajan, Strategies for restoring vision to the blind: current and emerging technologies. Neurosci. Lett. 519, 129–133 (2012)CrossRef
13.
go back to reference M. Ghovanloo, K. Najafi, A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid-State Circuits 39, 2457–2466 (2004)CrossRef M. Ghovanloo, K. Najafi, A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid-State Circuits 39, 2457–2466 (2004)CrossRef
14.
15.
go back to reference N. Leavitt, Payment applications make E-commerce mobile. IEEE Comput. Soc. 43, 19–22 (2010)CrossRef N. Leavitt, Payment applications make E-commerce mobile. IEEE Comput. Soc. 43, 19–22 (2010)CrossRef
16.
go back to reference M. Sadiku, Elements of Electromagnetics, 4th edn. (Oxford University Press, Oxford, 2007) M. Sadiku, Elements of Electromagnetics, 4th edn. (Oxford University Press, Oxford, 2007)
17.
go back to reference C. Zierhofer, E. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43, 708–714 (1996)CrossRef C. Zierhofer, E. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43, 708–714 (1996)CrossRef
18.
go back to reference F. Grover, Inductance Calculations Working Formulas and Tables (D. Van Nostrand Company, New York, 1946) F. Grover, Inductance Calculations Working Formulas and Tables (D. Van Nostrand Company, New York, 1946)
19.
go back to reference F. Terman, Radio Engineers Handbook (McGraw-Hill, New York, 1943) F. Terman, Radio Engineers Handbook (McGraw-Hill, New York, 1943)
20.
go back to reference M. Soma et al., Radio-frequency coils in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng. 34, 276–282 (1987)CrossRef M. Soma et al., Radio-frequency coils in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng. 34, 276–282 (1987)CrossRef
21.
go back to reference S. Venkatraman et al., A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans. Biomed. Eng. 56, 15–22 (2009)CrossRef S. Venkatraman et al., A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans. Biomed. Eng. 56, 15–22 (2009)CrossRef
22.
go back to reference J. Lee et al., A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45, 1935–1945 (2010)CrossRef J. Lee et al., A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45, 1935–1945 (2010)CrossRef
23.
go back to reference K. Arabi, M.A. Sawan, Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. IEEE Trans. Rehabil. Eng. 7(2), 204–214 (1999)CrossRef K. Arabi, M.A. Sawan, Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. IEEE Trans. Rehabil. Eng. 7(2), 204–214 (1999)CrossRef
24.
go back to reference S. Boyer et al., Implantable selective stimulator to improve bladder voiding: design and chronic experiment in dogs. IEEE Trans. Rehabil. Eng. 8(4), 789–797 (2000)CrossRef S. Boyer et al., Implantable selective stimulator to improve bladder voiding: design and chronic experiment in dogs. IEEE Trans. Rehabil. Eng. 8(4), 789–797 (2000)CrossRef
25.
go back to reference B. Ziaie et al., A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans. Biomed. Eng. 44(10), 909–920 (1997)CrossRef B. Ziaie et al., A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans. Biomed. Eng. 44(10), 909–920 (1997)CrossRef
26.
go back to reference B. Smith et al., An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 45(4), 463–475 (1998)CrossRef B. Smith et al., An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 45(4), 463–475 (1998)CrossRef
27.
go back to reference W. Liu et al., A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits 35, 1487–1497 (2000)CrossRef W. Liu et al., A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits 35, 1487–1497 (2000)CrossRef
28.
go back to reference G. Suaning, N. Lovell, CMOS neuro-stimulation ASIC with 100 channels, scalable output, and bidirectional radio-freq. telemetry. IEEE Trans. Biomed. Eng. 48, 248–260 (2001)CrossRef G. Suaning, N. Lovell, CMOS neuro-stimulation ASIC with 100 channels, scalable output, and bidirectional radio-freq. telemetry. IEEE Trans. Biomed. Eng. 48, 248–260 (2001)CrossRef
29.
go back to reference P. Raker et al., Secure contactless smartcard ASIC with DPA protection. IEEE J. Solid-State Circuits 36, 559–565 (2001)CrossRef P. Raker et al., Secure contactless smartcard ASIC with DPA protection. IEEE J. Solid-State Circuits 36, 559–565 (2001)CrossRef
30.
go back to reference U. Kaiser, W. Steinhaugen, A low-power transponder IC for high-performance identification systems. IEEE J. Solid-State Circuits 30, 306–310 (1995)CrossRef U. Kaiser, W. Steinhaugen, A low-power transponder IC for high-performance identification systems. IEEE J. Solid-State Circuits 30, 306–310 (1995)CrossRef
31.
go back to reference A. Abrial et al., A new contactless smart card IC using an on-chip antenna and an asynchronous microcontroller. IEEE J. Solid-State Circuits 36, 1101–1107 (2001)CrossRef A. Abrial et al., A new contactless smart card IC using an on-chip antenna and an asynchronous microcontroller. IEEE J. Solid-State Circuits 36, 1101–1107 (2001)CrossRef
32.
go back to reference D. Galbraith et al., A wide-band efficient inductive transdermal power and data link with coupling insensitive gain. IEEE Trans. Biomed. Eng. 34, 265–275 (1987)CrossRef D. Galbraith et al., A wide-band efficient inductive transdermal power and data link with coupling insensitive gain. IEEE Trans. Biomed. Eng. 34, 265–275 (1987)CrossRef
33.
go back to reference P. Troyk, G. DeMichele, Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation, in Proc. IEEE 25th EMBS Conf., pp. 3376–3379, September 2003 P. Troyk, G. DeMichele, Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation, in Proc. IEEE 25th EMBS Conf., pp. 3376–3379, September 2003
34.
go back to reference M. Ghovanloo, K. Najafi, High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Trans. Circuits Syst. I 51(12), 2374–2383 (2004)CrossRef M. Ghovanloo, K. Najafi, High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Trans. Circuits Syst. I 51(12), 2374–2383 (2004)CrossRef
35.
go back to reference M. Sawan et al., Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits Syst. Mag. 5, 21–39 (2005)CrossRef M. Sawan et al., Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits Syst. Mag. 5, 21–39 (2005)CrossRef
36.
go back to reference C. Marschner et al., A novel circuit concept for PSK-demodulation in passive telemetric systems. Microelectron. J. 33, 69–75 (2002)CrossRef C. Marschner et al., A novel circuit concept for PSK-demodulation in passive telemetric systems. Microelectron. J. 33, 69–75 (2002)CrossRef
37.
go back to reference S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2(4), 301–315 (2008)CrossRef S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2(4), 301–315 (2008)CrossRef
38.
go back to reference Z. Tang et al., Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42, 524–528 (1995)CrossRef Z. Tang et al., Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42, 524–528 (1995)CrossRef
39.
go back to reference L. Zhou, N. Donaldson, A fast passive data transmission method for eng telemetry. Neuromodulation 6(2), 116–121 (2003)CrossRef L. Zhou, N. Donaldson, A fast passive data transmission method for eng telemetry. Neuromodulation 6(2), 116–121 (2003)CrossRef
40.
go back to reference M. Catrysse et al., An inductive power system with integrated bi-directional data-transmission. Sens. Actuators A 115, 221–229 (2004)CrossRef M. Catrysse et al., An inductive power system with integrated bi-directional data-transmission. Sens. Actuators A 115, 221–229 (2004)CrossRef
41.
go back to reference G. Bawa, M. Ghovanloo, An active high power conversion efficiency rectifier with built-in dual-mode back telemetry in standard CMOS technology. IEEE Trans. Biomed. Circuits Syst. 2(3), 184–192 (2008)CrossRef G. Bawa, M. Ghovanloo, An active high power conversion efficiency rectifier with built-in dual-mode back telemetry in standard CMOS technology. IEEE Trans. Biomed. Circuits Syst. 2(3), 184–192 (2008)CrossRef
42.
go back to reference I. Obeid et al., Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 50, 255–258 (2003)CrossRef I. Obeid et al., Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 50, 255–258 (2003)CrossRef
43.
go back to reference E. Hawley et al., Telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus 12, 505–513 (2002)CrossRef E. Hawley et al., Telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus 12, 505–513 (2002)CrossRef
44.
go back to reference P. Mohseni, K. Najafi, A fully integrated neural recording amplifier with dc input stabilization. IEEE Trans. Biomed. Eng. 51, 832–837 (2004)CrossRef P. Mohseni, K. Najafi, A fully integrated neural recording amplifier with dc input stabilization. IEEE Trans. Biomed. Eng. 51, 832–837 (2004)CrossRef
45.
go back to reference N. Neihart, R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52, 1950–1959 (2005)CrossRef N. Neihart, R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52, 1950–1959 (2005)CrossRef
46.
go back to reference K. Gosalia, G. Lazzi, M. Humayun, Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microw. Theory Tech. 52(8), 1925–1933 (2004)CrossRef K. Gosalia, G. Lazzi, M. Humayun, Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microw. Theory Tech. 52(8), 1925–1933 (2004)CrossRef
47.
go back to reference M. Ghovanloo, S. Atluri, A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans. Circuits Syst. I 54(10), 2211–2221 (2007)CrossRef M. Ghovanloo, S. Atluri, A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans. Circuits Syst. I 54(10), 2211–2221 (2007)CrossRef
48.
go back to reference U. Jow, M. Ghovanloo, Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices. IEEE Trans. Biomed. Circuits Syst. 4(5), 301–310 (2010)CrossRef U. Jow, M. Ghovanloo, Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices. IEEE Trans. Biomed. Circuits Syst. 4(5), 301–310 (2010)CrossRef
49.
go back to reference M. Zhou et al., A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries. IEEE J. Solid-State Circuits 43, 2003–2012 (2008)CrossRef M. Zhou et al., A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries. IEEE J. Solid-State Circuits 43, 2003–2012 (2008)CrossRef
50.
go back to reference G. Simard et al., High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 4(3), 192–200 (2010)CrossRef G. Simard et al., High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 4(3), 192–200 (2010)CrossRef
51.
go back to reference U. Jow, M. Ghovanloo, Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 3, 339–347 (2009)CrossRef U. Jow, M. Ghovanloo, Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 3, 339–347 (2009)CrossRef
52.
go back to reference F. Inanlou, M. Ghovanloo, Wideband near-field data transmission using pulse harmonic modulation. IEEE Trans. Circuits Syst. I 58(1), 186–195 (2011)MathSciNetCrossRef F. Inanlou, M. Ghovanloo, Wideband near-field data transmission using pulse harmonic modulation. IEEE Trans. Circuits Syst. I 58(1), 186–195 (2011)MathSciNetCrossRef
53.
go back to reference F. Inanlou et al., A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J. Solid-State Circuits 46, 1296–1306 (2011)CrossRef F. Inanlou et al., A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J. Solid-State Circuits 46, 1296–1306 (2011)CrossRef
54.
go back to reference M. Kiani, M. Ghovanloo, A 20 Mbps pulse harmonic modulation transceiver for wideband near-filed data transmission. IEEE Trans. Circuits Syst. II 60, 382–386 (2013)CrossRef M. Kiani, M. Ghovanloo, A 20 Mbps pulse harmonic modulation transceiver for wideband near-filed data transmission. IEEE Trans. Circuits Syst. II 60, 382–386 (2013)CrossRef
55.
go back to reference N. Miura et al., A 195-Gb/s 1.2-inductive inter-chip wireless superconnect with transmitter power control scheme for 3-D-stacked system in a package. IEEE J. Solid-State Circuits 41(1), 23–33 (2006)CrossRef N. Miura et al., A 195-Gb/s 1.2-inductive inter-chip wireless superconnect with transmitter power control scheme for 3-D-stacked system in a package. IEEE J. Solid-State Circuits 41(1), 23–33 (2006)CrossRef
56.
go back to reference J. Yoo et al., A 1.12 pJ/b inductive transceiver with a fault tolerant network switch for multi-layer wearable body area network applications. IEEE J. Solid-State Circuits 44(11), 2999–3010 (2009)CrossRef J. Yoo et al., A 1.12 pJ/b inductive transceiver with a fault tolerant network switch for multi-layer wearable body area network applications. IEEE J. Solid-State Circuits 44(11), 2999–3010 (2009)CrossRef
57.
go back to reference S. Lee et al., A low-energy inductive coupling transceiver with cm-range 50-Mbps data communication in mobile device applications. IEEE J. Solid-State Circuits 45(11), 2366–2374 (2010) S. Lee et al., A low-energy inductive coupling transceiver with cm-range 50-Mbps data communication in mobile device applications. IEEE J. Solid-State Circuits 45(11), 2366–2374 (2010)
58.
go back to reference A. Rush, P. Troyk, A power and data link for a wireless-implanted neural recording system. IEEE Trans. Biomed. Circuits Syst. 59, 3255–3262 (2012) A. Rush, P. Troyk, A power and data link for a wireless-implanted neural recording system. IEEE Trans. Biomed. Circuits Syst. 59, 3255–3262 (2012)
59.
go back to reference G. Wang et al., Analysis of dual band power and data telemetry for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 6, 208–215 (2012)CrossRef G. Wang et al., Analysis of dual band power and data telemetry for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 6, 208–215 (2012)CrossRef
60.
go back to reference G. Simard et al., Novel coils topology intended for biomedical implants with multiple carrier inductive link, in Proc. IEEE Int. Symp. Cir. Syst., pp. 537–540, May 2009 G. Simard et al., Novel coils topology intended for biomedical implants with multiple carrier inductive link, in Proc. IEEE Int. Symp. Cir. Syst., pp. 537–540, May 2009
61.
go back to reference K. Chen et al., A 37.6 mm2 1024-channel high-compliance-voltage SoC for epiretinal prostheses, in Digest of technical papers, IEEE Intl. Solid-State Cir. Conf., pp. 294–295, February 2013 K. Chen et al., A 37.6 mm2 1024-channel high-compliance-voltage SoC for epiretinal prostheses, in Digest of technical papers, IEEE Intl. Solid-State Cir. Conf., pp. 294–295, February 2013
62.
go back to reference M. Kiani, M. Ghovanloo, A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans. Biomed. Circuits Syst. 9(1), 1–11 (2014)CrossRef M. Kiani, M. Ghovanloo, A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans. Biomed. Circuits Syst. 9(1), 1–11 (2014)CrossRef
63.
go back to reference M. Kiani, M. Ghovanloo, Pulse delay modulation (PDM) a new wideband data transmission method to implantable medical devices in presence of a power link, in IEEE Biomed. Cir. Syst. Conf., pp. 256–259, 2012 M. Kiani, M. Ghovanloo, Pulse delay modulation (PDM) a new wideband data transmission method to implantable medical devices in presence of a power link, in IEEE Biomed. Cir. Syst. Conf., pp. 256–259, 2012
64.
go back to reference Y. Hu, M. Sawan, A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans. Circuits Syst. I 52(12), 2552–2562 (2005)CrossRef Y. Hu, M. Sawan, A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans. Circuits Syst. I 52(12), 2552–2562 (2005)CrossRef
65.
go back to reference J. Lin, Computer methods for field intensity predictions, in CRC Handbook of Biological Effects of Electromagnetic Fields, ch. 2, ed. by C. Polk, E. Postow (CRC Press, Boca Raton, 1986), pp. 273–313 J. Lin, Computer methods for field intensity predictions, in CRC Handbook of Biological Effects of Electromagnetic Fields, ch. 2, ed. by C. Polk, E. Postow (CRC Press, Boca Raton, 1986), pp. 273–313
66.
go back to reference IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, 1999 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, 1999
Metadata
Title
Centimeter-Range Inductive Radios
Authors
Mehdi Kiani
Maysam Ghovanloo
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14714-7_10