Skip to main content
Top

2015 | OriginalPaper | Chapter

Near-Field Wireless Power Transfer

Authors : Patrick P. Mercier, Anantha P. Chandrakasan

Published in: Ultra-Low-Power Short-Range Radios

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless power transfer links are becoming increasingly important for consumer, industrial, and medical electronic devices. There are two principal applications for wireless power transfer that require different optimization criteria: continuous power deliver (e.g., cochlear implant) and periodic charging (e.g., cellular phone). In the former case, optimizing power transfer efficiency is a metric of great importance, while in the latter case, minimizing charging time by maximizing power transfer is important. This chapter presents analytical equations that predict optimal conditions for both applications through first-principals step-by-step reflected load analysis. These equations are then used as the basis for the design of a rapid wireless ultra-capacitor charging circuit that speeds up time-to-charge by 3.7×.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This is somewhat confusing, since parallel LC resonators exhibit a current multiplicative factor. However, from the perspective of the dependent voltage source Mi 1 in Fig. 2, a parallel tuning capacitor ends up looking like it is in series with the inductor.
 
2
Alternatively, R s can be lumped into the definition of the primary quality factor: Q 1, mod  = ω L 1∕(R s + R 1).
 
3
This resistance implicitly includes a conduction angle factor based on the fact that the diodes do not conduct all the time. A different model could include a resistance in series with a voltage source, modeling the average diode drop. Regardless, this analysis is not meant to be quantitative or extremely precise, but is instead used to offer a more qualitative understanding.
 
4
A Keithley 2400 sourcemeter was used to measure the power of each tap at output intervals of 0.5 V to dynamically determine the optimal configuration.
 
Literature
1.
go back to reference P.P. Mercier, A.P. Chandrakasan, Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil. IEEE Trans. Circuits Syst. I 60(9), 2263–2272 (2013)MathSciNetCrossRef P.P. Mercier, A.P. Chandrakasan, Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil. IEEE Trans. Circuits Syst. I 60(9), 2263–2272 (2013)MathSciNetCrossRef
2.
go back to reference R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamental, Biomedical Applications, and Bio-inspired Systems (Cambridge University Press, Cambridge, 2010)CrossRef R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamental, Biomedical Applications, and Bio-inspired Systems (Cambridge University Press, Cambridge, 2010)CrossRef
3.
go back to reference K. Van Schuylenbergh, R. Puers, Inductive Powering: Basic Theory and Application to Biomedical Systems (Springer, Dordrecht, 2009)CrossRef K. Van Schuylenbergh, R. Puers, Inductive Powering: Basic Theory and Application to Biomedical Systems (Springer, Dordrecht, 2009)CrossRef
4.
go back to reference A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)MathSciNetCrossRef A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)MathSciNetCrossRef
5.
go back to reference M. Kiani, M. Ghovanloo, The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I 59(9), 2065–2074 (2012)MathSciNetCrossRef M. Kiani, M. Ghovanloo, The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I 59(9), 2065–2074 (2012)MathSciNetCrossRef
6.
go back to reference K. Van Schuylenbergh, R. Puers, Self-tuning inductive powering for implantable telemetric monitoring systems. Sens. Actuators A Phys. 52(1), 1–7 (1996)CrossRef K. Van Schuylenbergh, R. Puers, Self-tuning inductive powering for implantable telemetric monitoring systems. Sens. Actuators A Phys. 52(1), 1–7 (1996)CrossRef
7.
go back to reference W. Sanchez, C. Sodini, J. Dawson, An energy management IC for bio-implants using ultracapacitors for energy storage, in Proc. IEEE Symp. VLSI Circuits (2010), pp. 63–64 W. Sanchez, C. Sodini, J. Dawson, An energy management IC for bio-implants using ultracapacitors for energy storage, in Proc. IEEE Symp. VLSI Circuits (2010), pp. 63–64
8.
go back to reference Y. Han, O. Leitermann, D. Jackson, J. Rivas, D. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22(1), 41–53 (2007)CrossRef Y. Han, O. Leitermann, D. Jackson, J. Rivas, D. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22(1), 41–53 (2007)CrossRef
9.
go back to reference P. Godoy, D. Perreault, J. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microw. Theory Tech. 57(12), 2895–2906 (2009)CrossRef P. Godoy, D. Perreault, J. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microw. Theory Tech. 57(12), 2895–2906 (2009)CrossRef
10.
go back to reference A. Tanabe, K. Hijioka, H. Nagase, Y. Hayashi, A novel variable inductor using a bridge circuit and its application to a 5–20 GHz Tunable LC-VCO. IEEE J. Solid-State Circuits 46(4), 883–893 (2011)CrossRef A. Tanabe, K. Hijioka, H. Nagase, Y. Hayashi, A novel variable inductor using a bridge circuit and its application to a 5–20 GHz Tunable LC-VCO. IEEE J. Solid-State Circuits 46(4), 883–893 (2011)CrossRef
11.
go back to reference C. Fu, C. Ko, C. Kuo, Y. Juang, A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier. IEEE Trans. Microw. Theory Tech. 56(12), 2754–2763 (2008) C. Fu, C. Ko, C. Kuo, Y. Juang, A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier. IEEE Trans. Microw. Theory Tech. 56(12), 2754–2763 (2008)
12.
go back to reference M. Paernel, High-efficiency transmission for medical implants. IEEE Solid-State Circuits Mag. 3(1), 47–59 (2011)CrossRef M. Paernel, High-efficiency transmission for medical implants. IEEE Solid-State Circuits Mag. 3(1), 47–59 (2011)CrossRef
13.
go back to reference T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn (Cambridge University Press, Cambridge, 2004) T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn (Cambridge University Press, Cambridge, 2004)
14.
go back to reference M. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Ciruits Syst. 1(1), 28–38 (2007)CrossRef M. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Ciruits Syst. 1(1), 28–38 (2007)CrossRef
Metadata
Title
Near-Field Wireless Power Transfer
Authors
Patrick P. Mercier
Anantha P. Chandrakasan
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14714-7_11