Skip to main content

2015 | OriginalPaper | Buchkapitel

Near-Field Wireless Power Transfer

verfasst von : Patrick P. Mercier, Anantha P. Chandrakasan

Erschienen in: Ultra-Low-Power Short-Range Radios

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless power transfer links are becoming increasingly important for consumer, industrial, and medical electronic devices. There are two principal applications for wireless power transfer that require different optimization criteria: continuous power deliver (e.g., cochlear implant) and periodic charging (e.g., cellular phone). In the former case, optimizing power transfer efficiency is a metric of great importance, while in the latter case, minimizing charging time by maximizing power transfer is important. This chapter presents analytical equations that predict optimal conditions for both applications through first-principals step-by-step reflected load analysis. These equations are then used as the basis for the design of a rapid wireless ultra-capacitor charging circuit that speeds up time-to-charge by 3.7×.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is somewhat confusing, since parallel LC resonators exhibit a current multiplicative factor. However, from the perspective of the dependent voltage source Mi 1 in Fig. 2, a parallel tuning capacitor ends up looking like it is in series with the inductor.
 
2
Alternatively, R s can be lumped into the definition of the primary quality factor: Q 1, mod  = ω L 1∕(R s + R 1).
 
3
This resistance implicitly includes a conduction angle factor based on the fact that the diodes do not conduct all the time. A different model could include a resistance in series with a voltage source, modeling the average diode drop. Regardless, this analysis is not meant to be quantitative or extremely precise, but is instead used to offer a more qualitative understanding.
 
4
A Keithley 2400 sourcemeter was used to measure the power of each tap at output intervals of 0.5 V to dynamically determine the optimal configuration.
 
Literatur
1.
Zurück zum Zitat P.P. Mercier, A.P. Chandrakasan, Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil. IEEE Trans. Circuits Syst. I 60(9), 2263–2272 (2013)MathSciNetCrossRef P.P. Mercier, A.P. Chandrakasan, Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil. IEEE Trans. Circuits Syst. I 60(9), 2263–2272 (2013)MathSciNetCrossRef
2.
Zurück zum Zitat R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamental, Biomedical Applications, and Bio-inspired Systems (Cambridge University Press, Cambridge, 2010)CrossRef R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamental, Biomedical Applications, and Bio-inspired Systems (Cambridge University Press, Cambridge, 2010)CrossRef
3.
Zurück zum Zitat K. Van Schuylenbergh, R. Puers, Inductive Powering: Basic Theory and Application to Biomedical Systems (Springer, Dordrecht, 2009)CrossRef K. Van Schuylenbergh, R. Puers, Inductive Powering: Basic Theory and Application to Biomedical Systems (Springer, Dordrecht, 2009)CrossRef
4.
Zurück zum Zitat A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)MathSciNetCrossRef A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)MathSciNetCrossRef
5.
Zurück zum Zitat M. Kiani, M. Ghovanloo, The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I 59(9), 2065–2074 (2012)MathSciNetCrossRef M. Kiani, M. Ghovanloo, The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I 59(9), 2065–2074 (2012)MathSciNetCrossRef
6.
Zurück zum Zitat K. Van Schuylenbergh, R. Puers, Self-tuning inductive powering for implantable telemetric monitoring systems. Sens. Actuators A Phys. 52(1), 1–7 (1996)CrossRef K. Van Schuylenbergh, R. Puers, Self-tuning inductive powering for implantable telemetric monitoring systems. Sens. Actuators A Phys. 52(1), 1–7 (1996)CrossRef
7.
Zurück zum Zitat W. Sanchez, C. Sodini, J. Dawson, An energy management IC for bio-implants using ultracapacitors for energy storage, in Proc. IEEE Symp. VLSI Circuits (2010), pp. 63–64 W. Sanchez, C. Sodini, J. Dawson, An energy management IC for bio-implants using ultracapacitors for energy storage, in Proc. IEEE Symp. VLSI Circuits (2010), pp. 63–64
8.
Zurück zum Zitat Y. Han, O. Leitermann, D. Jackson, J. Rivas, D. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22(1), 41–53 (2007)CrossRef Y. Han, O. Leitermann, D. Jackson, J. Rivas, D. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22(1), 41–53 (2007)CrossRef
9.
Zurück zum Zitat P. Godoy, D. Perreault, J. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microw. Theory Tech. 57(12), 2895–2906 (2009)CrossRef P. Godoy, D. Perreault, J. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microw. Theory Tech. 57(12), 2895–2906 (2009)CrossRef
10.
Zurück zum Zitat A. Tanabe, K. Hijioka, H. Nagase, Y. Hayashi, A novel variable inductor using a bridge circuit and its application to a 5–20 GHz Tunable LC-VCO. IEEE J. Solid-State Circuits 46(4), 883–893 (2011)CrossRef A. Tanabe, K. Hijioka, H. Nagase, Y. Hayashi, A novel variable inductor using a bridge circuit and its application to a 5–20 GHz Tunable LC-VCO. IEEE J. Solid-State Circuits 46(4), 883–893 (2011)CrossRef
11.
Zurück zum Zitat C. Fu, C. Ko, C. Kuo, Y. Juang, A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier. IEEE Trans. Microw. Theory Tech. 56(12), 2754–2763 (2008) C. Fu, C. Ko, C. Kuo, Y. Juang, A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier. IEEE Trans. Microw. Theory Tech. 56(12), 2754–2763 (2008)
12.
Zurück zum Zitat M. Paernel, High-efficiency transmission for medical implants. IEEE Solid-State Circuits Mag. 3(1), 47–59 (2011)CrossRef M. Paernel, High-efficiency transmission for medical implants. IEEE Solid-State Circuits Mag. 3(1), 47–59 (2011)CrossRef
13.
Zurück zum Zitat T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn (Cambridge University Press, Cambridge, 2004) T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn (Cambridge University Press, Cambridge, 2004)
14.
Zurück zum Zitat M. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Ciruits Syst. 1(1), 28–38 (2007)CrossRef M. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Ciruits Syst. 1(1), 28–38 (2007)CrossRef
Metadaten
Titel
Near-Field Wireless Power Transfer
verfasst von
Patrick P. Mercier
Anantha P. Chandrakasan
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-14714-7_11

Neuer Inhalt