Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2023

01-11-2023

Changing the Intensity on the Caustic of Autofocusing Chirp Beams Depending on the Incident Beam Amplitude

Authors: A. V. Ustinov, A. R. Skidanova

Published in: Optical Memory and Neural Networks | Special Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have obtained an expression for the amplitude and intensity of the field along the caustic line, which is formed during autofocusing when the generalized lens is illuminated. Two types of the incident beam amplitude are considered: the product of a power and generalized exponential function; fractional-rational amplitude without singularities. With different ratios between the parameters, the dependence of intensity on distance will have a diverse form – increasing, decreasing, with a maximum, with a minimum. At the same time, the edge values can also be different: zero, positive number, infinity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, D., Mo, Z., Jiang, J., Huang, H., Wei, Q., Wu, Y., Wang, X., Liang, Z., Yang, H., Chen, H., Huang, H., Liu, H., Deng, D., and Shui, L., Guiding particles along arbitrary trajectories by circular Pearcey-like vortex beams, Phys. Rev. A, 2022, vol. 106, p. 013509CrossRef Xu, D., Mo, Z., Jiang, J., Huang, H., Wei, Q., Wu, Y., Wang, X., Liang, Z., Yang, H., Chen, H., Huang, H., Liu, H., Deng, D., and Shui, L., Guiding particles along arbitrary trajectories by circular Pearcey-like vortex beams, Phys. Rev. A, 2022, vol. 106, p. 013509CrossRef
2.
go back to reference Zhang, Y., Mo, Z., Xu, D., He, S., Ding, Y., Huang, Q., Lu, Z., and Deng, D., Circular Mathieu and Weber autofocusing beams, Opt. Lett., 2022, vol. 47, pp. 3059–3062.CrossRef Zhang, Y., Mo, Z., Xu, D., He, S., Ding, Y., Huang, Q., Lu, Z., and Deng, D., Circular Mathieu and Weber autofocusing beams, Opt. Lett., 2022, vol. 47, pp. 3059–3062.CrossRef
3.
go back to reference Jiang, Y., Yu, W., and Zeng, K., Arbitrary shaped abruptly autofocusing beams, Opt. Laser Technol., 2023, vol. 159, p. 108963.CrossRef Jiang, Y., Yu, W., and Zeng, K., Arbitrary shaped abruptly autofocusing beams, Opt. Laser Technol., 2023, vol. 159, p. 108963.CrossRef
5.
go back to reference Hu, X., Zhao, B., Chen, R., and Rosales-Guzman, C., Experimental generation of arbitrary abruptly autofusing Circular Airy Gaussian vortex vector beams, Sci. Rep., 2022, vol. 12, p. 18274.CrossRef Hu, X., Zhao, B., Chen, R., and Rosales-Guzman, C., Experimental generation of arbitrary abruptly autofusing Circular Airy Gaussian vortex vector beams, Sci. Rep., 2022, vol. 12, p. 18274.CrossRef
6.
go back to reference Vyas, S. and Luo, Y., Volume holography-based abrupt autofocusing beam, Appl. Opt., 2023, vol. 62, no. 10, pp. D90–D96.CrossRef Vyas, S. and Luo, Y., Volume holography-based abrupt autofocusing beam, Appl. Opt., 2023, vol. 62, no. 10, pp. D90–D96.CrossRef
7.
go back to reference Chremmos, I., Efremidis, N.K., and Christodoulides, D.N., Pre-engineered abruptly autofocusing beams, Opt. Lett., 2011, vol. 36, no. 10, pp. 1890–1892.CrossRef Chremmos, I., Efremidis, N.K., and Christodoulides, D.N., Pre-engineered abruptly autofocusing beams, Opt. Lett., 2011, vol. 36, no. 10, pp. 1890–1892.CrossRef
8.
go back to reference Porfirev, A.P. and Khonina, S.N., Generation of the azimuthally modulated circular superlinear Airy beams, J. Opt. Soc. Am. B, 2017, vol. 34, no. 12, pp. 2544–2549.CrossRef Porfirev, A.P. and Khonina, S.N., Generation of the azimuthally modulated circular superlinear Airy beams, J. Opt. Soc. Am. B, 2017, vol. 34, no. 12, pp. 2544–2549.CrossRef
9.
go back to reference Siviloglou, G.A. and Christodoulides, D.N., Accelerating finite energy Airy beams, Opt. Lett., 2007, vol. 32, no. 8, pp. 979–981.CrossRef Siviloglou, G.A. and Christodoulides, D.N., Accelerating finite energy Airy beams, Opt. Lett., 2007, vol. 32, no. 8, pp. 979–981.CrossRef
10.
go back to reference Besieris, I.M. and Shaarawi, A.M., A note on an accelerating finite energy Airy beam, Opt. Lett., 2007, vol. 32, pp. 2447–2449.CrossRef Besieris, I.M. and Shaarawi, A.M., A note on an accelerating finite energy Airy beam, Opt. Lett., 2007, vol. 32, pp. 2447–2449.CrossRef
11.
go back to reference Zhang, P., Prakash, J., Zhang, Z., Mills, M.S., Efremidis, N.K., Christodoulides, D.N., and Chen Z., Trapping and guiding microparticles with morphing autofocusing Airy beams, Opt. Lett., 2011, vol. 36, no. 15, pp. 2883–2885.CrossRef Zhang, P., Prakash, J., Zhang, Z., Mills, M.S., Efremidis, N.K., Christodoulides, D.N., and Chen Z., Trapping and guiding microparticles with morphing autofocusing Airy beams, Opt. Lett., 2011, vol. 36, no. 15, pp. 2883–2885.CrossRef
12.
go back to reference Jiang, Y., Huang, K., and Lu, X., Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle, Opt. Express, 2013, vol. 21, no. 20, pp. 24413–24421.CrossRef Jiang, Y., Huang, K., and Lu, X., Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle, Opt. Express, 2013, vol. 21, no. 20, pp. 24413–24421.CrossRef
13.
go back to reference Manousidaki, M., Papazoglou, D.G., Farsari, M., and Tzortzakis, S., Abruptly autofocusing beams enable advanced multiscale photo-polymerization, Optica, 2016, vol. 3, no. 5, pp. 525–530.CrossRef Manousidaki, M., Papazoglou, D.G., Farsari, M., and Tzortzakis, S., Abruptly autofocusing beams enable advanced multiscale photo-polymerization, Optica, 2016, vol. 3, no. 5, pp. 525–530.CrossRef
14.
go back to reference Panagiotopoulos, P., Papazoglou, D.G., Couairon, A., and Tzortzakis, S., Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets, Nat. Commun., 2013, vol. 4, p. 2622.CrossRef Panagiotopoulos, P., Papazoglou, D.G., Couairon, A., and Tzortzakis, S., Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets, Nat. Commun., 2013, vol. 4, p. 2622.CrossRef
15.
go back to reference Liu, S., Wang, M., Li, P., Zhang, P., and Zhao, J., Abrupt polarization transition of vector autofocusing Airy beams, Opt. Lett., 2013, vol. 38, no. 14, pp. 2416–2418.CrossRef Liu, S., Wang, M., Li, P., Zhang, P., and Zhao, J., Abrupt polarization transition of vector autofocusing Airy beams, Opt. Lett., 2013, vol. 38, no. 14, pp. 2416–2418.CrossRef
16.
go back to reference Degtyarev, S.A., Volotovsky, S.G., and Khonina, S.N., Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams, J. Opt. Soc. Am. B, 2018, vol. 35, no. 8, pp. 1963–1969.CrossRef Degtyarev, S.A., Volotovsky, S.G., and Khonina, S.N., Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams, J. Opt. Soc. Am. B, 2018, vol. 35, no. 8, pp. 1963–1969.CrossRef
17.
go back to reference Khonina, S.N., Ustinov, A.V., and Porfirev, A.P., Aberration laser beams with autofocusing properties, Appl. Opt., 2018, vol. 57, no. 6, pp. 1410–1416.CrossRef Khonina, S.N., Ustinov, A.V., and Porfirev, A.P., Aberration laser beams with autofocusing properties, Appl. Opt., 2018, vol. 57, no. 6, pp. 1410–1416.CrossRef
18.
go back to reference Reddy, A.N.K., Khonina, S.N., and Pal, V., Generating autofocused aberration laser beams with different spectral performance, J. Opt., 2020, vol. 22, p. 045606.CrossRef Reddy, A.N.K., Khonina, S.N., and Pal, V., Generating autofocused aberration laser beams with different spectral performance, J. Opt., 2020, vol. 22, p. 045606.CrossRef
19.
go back to reference Dev, V., Reddy, A.N.K., Ustinov, A.V., Khonina, S.N., and Pal, V., Autofocusing and self-healing properties of aberration laser beams in a turbulent media, Phys. Rev. Appl., 2021, vol. 16, p. 014061.CrossRef Dev, V., Reddy, A.N.K., Ustinov, A.V., Khonina, S.N., and Pal, V., Autofocusing and self-healing properties of aberration laser beams in a turbulent media, Phys. Rev. Appl., 2021, vol. 16, p. 014061.CrossRef
20.
go back to reference Zhang, J.B., Zhou, K.Z., Liang, J.H., Lai, Z.Y., Yang, X.L., and Deng, D.M., Nonparaxial propagation of the chirped Airy vortex beams in uniaxial crystal orthogonal to the optical axis, Opt. Express, 2018, vol. 26, pp. 1290–1304.CrossRef Zhang, J.B., Zhou, K.Z., Liang, J.H., Lai, Z.Y., Yang, X.L., and Deng, D.M., Nonparaxial propagation of the chirped Airy vortex beams in uniaxial crystal orthogonal to the optical axis, Opt. Express, 2018, vol. 26, pp. 1290–1304.CrossRef
21.
go back to reference Khonina, S.N., Porfirev, A.P., and Ustinov, A.V., Sudden autofocusing of superlinear chirp beams, J. Opt., 2018, vol. 20, no. 2, p. 025605.CrossRef Khonina, S.N., Porfirev, A.P., and Ustinov, A.V., Sudden autofocusing of superlinear chirp beams, J. Opt., 2018, vol. 20, no. 2, p. 025605.CrossRef
22.
go back to reference Ustinov, A.V. and Khonina, S.N., Properties of off-axis caustics of autofocusing chirp beams, Comput. Opt., 2020, vol. 44, no. 5, pp. 721–727.CrossRef Ustinov, A.V. and Khonina, S.N., Properties of off-axis caustics of autofocusing chirp beams, Comput. Opt., 2020, vol. 44, no. 5, pp. 721–727.CrossRef
23.
go back to reference Belafhal, A., Ez-Zariy, L., Hennani, S., and Nebd, H., Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams, Opt. Photonics J., 2015, vol. 5, no.7, pp. 234–246.CrossRef Belafhal, A., Ez-Zariy, L., Hennani, S., and Nebd, H., Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams, Opt. Photonics J., 2015, vol. 5, no.7, pp. 234–246.CrossRef
24.
go back to reference Khonina, S.N. and Ustinov, A.V., Fractional Airy beams, J. Opt. Soc. Am. A, 2017, vol. 34, no. 11, pp. 1991–1999.CrossRef Khonina, S.N. and Ustinov, A.V., Fractional Airy beams, J. Opt. Soc. Am. A, 2017, vol. 34, no. 11, pp. 1991–1999.CrossRef
25.
go back to reference Ring, J., Lindberg, J., Mourka, A., Mazilu, M., Dholakia, K., and Dennis, M., Auto-focusing and self-healing of Pearcey beams, Opt. Express, 2012, vol. 20, no. 17, pp. 18955–18966.CrossRef Ring, J., Lindberg, J., Mourka, A., Mazilu, M., Dholakia, K., and Dennis, M., Auto-focusing and self-healing of Pearcey beams, Opt. Express, 2012, vol. 20, no. 17, pp. 18955–18966.CrossRef
26.
go back to reference Kovalev, A.A., Kotlyar, V.V., and Zaskanov, S.G., Structurally stable three-dimensional and two-dimensional laser half Pearcey beams, Comput. Opt., 2014, vol. 38, no. 2, pp. 193–197.CrossRef Kovalev, A.A., Kotlyar, V.V., and Zaskanov, S.G., Structurally stable three-dimensional and two-dimensional laser half Pearcey beams, Comput. Opt., 2014, vol. 38, no. 2, pp. 193–197.CrossRef
27.
go back to reference Chen, X., Deng, D., Zhuang, J., Yang, X., Liu, H., and Wang, G., Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams, Appl. Opt., 2018, vol. 57, no. 28, pp. 8418–8423.CrossRef Chen, X., Deng, D., Zhuang, J., Yang, X., Liu, H., and Wang, G., Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams, Appl. Opt., 2018, vol. 57, no. 28, pp. 8418–8423.CrossRef
28.
go back to reference Vaveliuk, P., Lencina, A., Rodrigo, J.A., and Matos, O.M., Symmetric Airy beams, Opt. Lett., 2014, vol. 39, no. 8, pp. 2370–2373.CrossRef Vaveliuk, P., Lencina, A., Rodrigo, J.A., and Matos, O.M., Symmetric Airy beams, Opt. Lett., 2014, vol. 39, no. 8, pp. 2370–2373.CrossRef
29.
go back to reference Khonina, S.N., Mirror and circular symmetry of autofocusing beams, Symmetry, 2021, vol. 13, p. 1794CrossRef Khonina, S.N., Mirror and circular symmetry of autofocusing beams, Symmetry, 2021, vol. 13, p. 1794CrossRef
30.
go back to reference Khonina, S.N. and Volotovsky, S.G., Mirror laser Airy beams, Comput. Opt., 2010, vol. 34, no. 2, pp. 203–213. Khonina, S.N. and Volotovsky, S.G., Mirror laser Airy beams, Comput. Opt., 2010, vol. 34, no. 2, pp. 203–213.
31.
go back to reference Khonina, S.N., Specular and vortical Airy beams, Opt. Commun., 2011, vol. 284, no. 19, pp. 4263–4271.CrossRef Khonina, S.N., Specular and vortical Airy beams, Opt. Commun., 2011, vol. 284, no. 19, pp. 4263–4271.CrossRef
32.
go back to reference Khonina, S.N., Porfirev, A.P., Fomchenkov, S.A., Larkin, A.S., and Savelyev-Trofimov, A.B., Generation of closely located light spots using specular Airy laser beams, Comput. Opt., 2017, vol. 41, no. 5, pp. 661–669.CrossRef Khonina, S.N., Porfirev, A.P., Fomchenkov, S.A., Larkin, A.S., and Savelyev-Trofimov, A.B., Generation of closely located light spots using specular Airy laser beams, Comput. Opt., 2017, vol. 41, no. 5, pp. 661–669.CrossRef
33.
go back to reference Khonina, S.N., Skidanov, R.V., and Moiseev, O.Y., Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation, Comput. Opt., 2009, vol. 33, no. 2, pp. 138–146. Khonina, S.N., Skidanov, R.V., and Moiseev, O.Y., Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation, Comput. Opt., 2009, vol. 33, no. 2, pp. 138–146.
34.
go back to reference Lu, W.L., Sun, X, Chen, H.J., Liu, S.Y., and Lin, Z.F., Abruptly autofocusing property and optical manipulation of circular Airy beams, Phys. Rev. A, 2019, vol. 99, p. 013817.CrossRef Lu, W.L., Sun, X, Chen, H.J., Liu, S.Y., and Lin, Z.F., Abruptly autofocusing property and optical manipulation of circular Airy beams, Phys. Rev. A, 2019, vol. 99, p. 013817.CrossRef
35.
go back to reference Panagiotopoulos, P., Couairon, A., Kolesik, M., Papazoglou, D.G., Moloney, J.V., and Tzortzakis, S., Nonlinear plasma-assisted collapse of ring-Airy wave packets, Phys. Rev. A, 2016, vol. 93, p. 033808.CrossRef Panagiotopoulos, P., Couairon, A., Kolesik, M., Papazoglou, D.G., Moloney, J.V., and Tzortzakis, S., Nonlinear plasma-assisted collapse of ring-Airy wave packets, Phys. Rev. A, 2016, vol. 93, p. 033808.CrossRef
36.
go back to reference Syubaev, S., Zhizhchenko, A., Vitrik, O., Porfirev, A., Fomchenkov, S., Khonina, S., Kudryashov, S., and Kuchmizhak, A., Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral shape pulses, Appl. Surf. Sci., 2019, vol. 470, pp. 526–534.CrossRef Syubaev, S., Zhizhchenko, A., Vitrik, O., Porfirev, A., Fomchenkov, S., Khonina, S., Kudryashov, S., and Kuchmizhak, A., Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral shape pulses, Appl. Surf. Sci., 2019, vol. 470, pp. 526–534.CrossRef
37.
go back to reference Li, P., Liu, S., Peng, T., Xie, G., Gan, X., and Zhao, J., Spiral autofocusing Airy beams carrying power-exponent phase vortices, Opt. Express, 2014, vol. 22, no. 7, pp. 7598–7606.CrossRef Li, P., Liu, S., Peng, T., Xie, G., Gan, X., and Zhao, J., Spiral autofocusing Airy beams carrying power-exponent phase vortices, Opt. Express, 2014, vol. 22, no. 7, pp. 7598–7606.CrossRef
38.
go back to reference Jiang, Y., Zhao, S., Yu, W., and Zhu, X., Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles, J. Opt. Soc. Am. A, 2018, vol. 35, pp. 890–894.CrossRef Jiang, Y., Zhao, S., Yu, W., and Zhu, X., Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles, J. Opt. Soc. Am. A, 2018, vol. 35, pp. 890–894.CrossRef
39.
go back to reference Yan, X., Guo, L., Cheng, M., and Chai, S., Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients, Chin. Opt. Lett., 2019, vol. 17, no. 4, p. 040101.CrossRef Yan, X., Guo, L., Cheng, M., and Chai, S., Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients, Chin. Opt. Lett., 2019, vol. 17, no. 4, p. 040101.CrossRef
40.
go back to reference Brimis, A., Makris, K.G., and Papazoglou, D.G., Tornado waves, Opt. Lett., 2020, vol. 45, no. 2, pp. 280–283.CrossRef Brimis, A., Makris, K.G., and Papazoglou, D.G., Tornado waves, Opt. Lett., 2020, vol. 45, no. 2, pp. 280–283.CrossRef
41.
go back to reference Khonina, S.N., Porfirev, A.P., Ustinov, A.V., and Butt, M.A., Generation of complex transverse energy flow distributions with autofocusing optical vortex beams, Micromachines, 2021, vol. 12, no. 3, p. 297.CrossRef Khonina, S.N., Porfirev, A.P., Ustinov, A.V., and Butt, M.A., Generation of complex transverse energy flow distributions with autofocusing optical vortex beams, Micromachines, 2021, vol. 12, no. 3, p. 297.CrossRef
42.
go back to reference Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581.CrossRef Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581.CrossRef
43.
go back to reference Volyar, A.V., Abramochkin, E.G., Razueva, E.V., Akimova, Y.E., and Bretsko, M.V., Structural stability of spiral beams and fine structure of an energy flow, Comput. Opt., 2021, vol. 45, no. 4, pp. 482–489.CrossRef Volyar, A.V., Abramochkin, E.G., Razueva, E.V., Akimova, Y.E., and Bretsko, M.V., Structural stability of spiral beams and fine structure of an energy flow, Comput. Opt., 2021, vol. 45, no. 4, pp. 482–489.CrossRef
44.
go back to reference Ustinov, A.V. and Khonina, S.N., Generalized lens: calculation of distribution on the optical axis, Comput. Opt., 2013, vol. 37, no. 3, pp. 307–315.CrossRef Ustinov, A.V. and Khonina, S.N., Generalized lens: calculation of distribution on the optical axis, Comput. Opt., 2013, vol. 37, no. 3, pp. 307–315.CrossRef
45.
go back to reference Gorelick, S., Paganin, D.M., and Marco, A., Axilenses: Refractive micro-optical elements with arbitrary exponential profiles, APL Photonics, 2020, vol. 5, pp. 106–110.CrossRef Gorelick, S., Paganin, D.M., and Marco, A., Axilenses: Refractive micro-optical elements with arbitrary exponential profiles, APL Photonics, 2020, vol. 5, pp. 106–110.CrossRef
46.
go back to reference Friberg, A.T., Stationary-phase analysis of generalized axicons, J. Opt. Soc. Am. A, 1996, vol. 13, no. 4, pp. 743–750.CrossRef Friberg, A.T., Stationary-phase analysis of generalized axicons, J. Opt. Soc. Am. A, 1996, vol. 13, no. 4, pp. 743–750.CrossRef
47.
go back to reference Ustinov, A.V. and Khonina, S.N., Fracxicon as hybrid element between the parabolic lens and the linear axicon, Comput. Opt., 2014, vol. 38, no. 3, pp. 402–411.CrossRef Ustinov, A.V. and Khonina, S.N., Fracxicon as hybrid element between the parabolic lens and the linear axicon, Comput. Opt., 2014, vol. 38, no. 3, pp. 402–411.CrossRef
48.
go back to reference Khonina, S.N. and Ustinov, A.V., Very compact focal spot in the near-field of the fractional axicon, Opt. Commun., 2017, vol. 391, pp. 24–29.CrossRef Khonina, S.N. and Ustinov, A.V., Very compact focal spot in the near-field of the fractional axicon, Opt. Commun., 2017, vol. 391, pp. 24–29.CrossRef
49.
go back to reference Kotlyar, V.V., Kovalev, A.A., Kalinkina, D.S., and Kozlova, E.S., Fourier-Bessel beams of finite energy, Comput. Opt., 2021, vol. 45, no. 4, pp. 506–511.CrossRef Kotlyar, V.V., Kovalev, A.A., Kalinkina, D.S., and Kozlova, E.S., Fourier-Bessel beams of finite energy, Comput. Opt., 2021, vol. 45, no. 4, pp. 506–511.CrossRef
50.
go back to reference Kotlyar, V.V., Kovalev, A.A., and Porfirev, A.P., A variety of Fourier-invariant Gaussian beams, Comput. Opt., 2018, vol. 42, no. 5, pp. 727–735.CrossRef Kotlyar, V.V., Kovalev, A.A., and Porfirev, A.P., A variety of Fourier-invariant Gaussian beams, Comput. Opt., 2018, vol. 42, no. 5, pp. 727–735.CrossRef
51.
go back to reference Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, London, San Francisco: Pitman, 1978.MATH Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, London, San Francisco: Pitman, 1978.MATH
52.
go back to reference Gilmore, R. Catastrophe Theory for Scientists and Engineers, New York: Wiley, 1981.MATH Gilmore, R. Catastrophe Theory for Scientists and Engineers, New York: Wiley, 1981.MATH
53.
go back to reference Vaveliuk, P., Lencina, A., Rodrigo, J.A., and Matos, O.M., Caustics, catastrophes, and symmetries in curved beams, Phys. Rev. A, 2015, vol. 92, p. 033850.CrossRef Vaveliuk, P., Lencina, A., Rodrigo, J.A., and Matos, O.M., Caustics, catastrophes, and symmetries in curved beams, Phys. Rev. A, 2015, vol. 92, p. 033850.CrossRef
54.
go back to reference Sosa-Sanchez, C.T., Juarez-Reyes, S.A., Rickenstorff-Parrao, C., Julian-Macias, I., and Silva-Ortigoza, G., Superposition of Bessel beams: geometrical wavefronts, light rays, caustic, intensity patterns and experimental generation, J. Opt., 2018, vol. 20, p. 085608.CrossRef Sosa-Sanchez, C.T., Juarez-Reyes, S.A., Rickenstorff-Parrao, C., Julian-Macias, I., and Silva-Ortigoza, G., Superposition of Bessel beams: geometrical wavefronts, light rays, caustic, intensity patterns and experimental generation, J. Opt., 2018, vol. 20, p. 085608.CrossRef
55.
go back to reference Kharitonov, S.I., Volotovsky, S.G., Khonina, S.N., and Kazanskiy N.L., Diffraction catastrophes and asymptotic analysis of caustics from axisymmetric optical elements, Proc. SPIE, 2019, vol. 11146, p. 11460K. Kharitonov, S.I., Volotovsky, S.G., Khonina, S.N., and Kazanskiy N.L., Diffraction catastrophes and asymptotic analysis of caustics from axisymmetric optical elements, Proc. SPIE, 2019, vol. 11146, p. 11460K.
56.
go back to reference Kharitonov, S.I., Volotovsky, S.G., and Khonina, S.N., Catastrophe theory and caustics of radially symmetric beams, Comput. Opt., 2019, vol. 43, no. 2, pp. 159–167.CrossRef Kharitonov, S.I., Volotovsky, S.G., and Khonina, S.N., Catastrophe theory and caustics of radially symmetric beams, Comput. Opt., 2019, vol. 43, no. 2, pp. 159–167.CrossRef
57.
go back to reference Soifer, V.A., Kharitonov, S.I., Khonina, S.N., and Volotovsky, S.G., Caustics of vortex optical beams, Dokl. Phys., 2019, vol. 64, no. 7, pp. 276–279.CrossRef Soifer, V.A., Kharitonov, S.I., Khonina, S.N., and Volotovsky, S.G., Caustics of vortex optical beams, Dokl. Phys., 2019, vol. 64, no. 7, pp. 276–279.CrossRef
58.
go back to reference Kharitonov, S.I., Khonina, S.N., Volotovskiy, S.G., and Kazanskiy, N.L., Caustics of the vortex beams generated by vortex lenses and vortex axicons, J. Opt. Soc. Am. A, 2020, vol. 37, no. 3, pp. 476–482.CrossRef Kharitonov, S.I., Khonina, S.N., Volotovskiy, S.G., and Kazanskiy, N.L., Caustics of the vortex beams generated by vortex lenses and vortex axicons, J. Opt. Soc. Am. A, 2020, vol. 37, no. 3, pp. 476–482.CrossRef
59.
go back to reference Soifer, V.A., Kharitonov, S.I., Khonina, S.N., Strelkov, Y.S., and Porfirev, A.P., Spiral Caustics of Vortex Beams, Photonics, 2021, vol. 8, p. 24.CrossRef Soifer, V.A., Kharitonov, S.I., Khonina, S.N., Strelkov, Y.S., and Porfirev, A.P., Spiral Caustics of Vortex Beams, Photonics, 2021, vol. 8, p. 24.CrossRef
61.
go back to reference Ditkin, V.A. and Prudnikov, A.P., Integral Transformations and Operational Calculus, Moscow: Publ. House of Physical and Mathematical literature, 1961 (in Russian). Ditkin, V.A. and Prudnikov, A.P., Integral Transformations and Operational Calculus, Moscow: Publ. House of Physical and Mathematical literature, 1961 (in Russian).
Metadata
Title
Changing the Intensity on the Caustic of Autofocusing Chirp Beams Depending on the Incident Beam Amplitude
Authors
A. V. Ustinov
A. R. Skidanova
Publication date
01-11-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue Special Issue 1/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23050181

Other articles of this Special Issue 1/2023

Optical Memory and Neural Networks 1/2023 Go to the issue

Premium Partner