Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

19-08-2020

Channel Allocation with MIMO in Cognitive Radio Network

Author: Vipin Balyan

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The bulk volume and diverse data generated by Smart grid applications require use of Cognitive Radio (CR) technology for efficient handling. The CR technology proved out to be the most efficient technology which improves spectral utilization of any wireless network. The work in this paper is on the assignment of spectrum to the secondary users when primary user are not using. The work uses hybrid of CR and MIMO technology with clustering of gate ways, the channel allocation is done by taking real time environment in consideration. In this paper, three assignment schemes are proposed fair (F-MIMO) scheme, priority (P-MIMO) scheme and small clusters (CC-MIMO). The F-MIMO is used in low traffic condition, when all the HGWs sends the periodic data. The P-MIMO instead of reserving channels for priority user’s places non priority users in buffer in conditions when no vacant channel is available for priority users, this scheme is used in moderate traffic conditions. For the high traffic load, CC-MIMO provides priority and also borrows channels from nearby gate ways. The simulations are performed in three clusters. The simulations are done under moderate traffic using P-MIMO to compare utility of gateway with sensing bandwidth using different sensing costs. The proposed three schemes are compared in fairness and user rewards in both scenarios when borrowing is allowed and not allowed. The CC-MIMO performed optimal as compared to F-MIMO and P-MIMO which are comparable to other schemes in literature. The number of channel allocations and maximum sum reward are simulated with respect to the number of users in presence of priority users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khan, A. A., Rehmani, M. H., & Reisslein, M. (2015). Cognitive radio for smart grids : Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys & Tutorials, 18(1), 860–898.CrossRef Khan, A. A., Rehmani, M. H., & Reisslein, M. (2015). Cognitive radio for smart grids : Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys & Tutorials, 18(1), 860–898.CrossRef
2.
go back to reference Alam, S., Sohail, M. F., Ghauri, S. A., Qureshi, I. M., & Aqdas, N. (2017). Cognitive radio based smart grid communication network. Renewable and Sustainable Energy Reviews, 72, 535–548.CrossRef Alam, S., Sohail, M. F., Ghauri, S. A., Qureshi, I. M., & Aqdas, N. (2017). Cognitive radio based smart grid communication network. Renewable and Sustainable Energy Reviews, 72, 535–548.CrossRef
3.
go back to reference Faheem, M., & Cagri-Gungor, V. (2017). Capacity and spectrum-aware communication framework for wireless sensor network-based smart grid applications. Computer Standards and Interfaces, 53, 48–58.CrossRef Faheem, M., & Cagri-Gungor, V. (2017). Capacity and spectrum-aware communication framework for wireless sensor network-based smart grid applications. Computer Standards and Interfaces, 53, 48–58.CrossRef
4.
go back to reference Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing Journal, 68, 910–922.CrossRef Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing Journal, 68, 910–922.CrossRef
5.
go back to reference Faheem, M., & Gungor, V. C. (2018). MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Generation Computer Systems, 82, 354–378.CrossRef Faheem, M., & Gungor, V. C. (2018). MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Generation Computer Systems, 82, 354–378.CrossRef
6.
go back to reference Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wireless Communications, 20, 125–132.CrossRef Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wireless Communications, 20, 125–132.CrossRef
7.
go back to reference Xu, L., Qian, F., Li, Y., Li, Q., Yang, Y. W., & Xu, J. (2016). Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 173, 1250–1256.CrossRef Xu, L., Qian, F., Li, Y., Li, Q., Yang, Y. W., & Xu, J. (2016). Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 173, 1250–1256.CrossRef
8.
go back to reference Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46, 80–85.CrossRef Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46, 80–85.CrossRef
9.
go back to reference Laverty, D. M., Morrow, D. J., Best, R., & Crossley, P. A. (2010). Telecommunications for smart grid: Backhaul solutions for the distribution network. In: IEEE PES General Meeting, PES 2010. Laverty, D. M., Morrow, D. J., Best, R., & Crossley, P. A. (2010). Telecommunications for smart grid: Backhaul solutions for the distribution network. In: IEEE PES General Meeting, PES 2010.
10.
go back to reference Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15, 5–20.CrossRef Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15, 5–20.CrossRef
11.
go back to reference Bouhafs, F., Mackay, M., & Merabti, M. (2012). Links to the future: Communication requirements and challenges in the smart grid. IEEE Power and Energy Magazine, 10, 24–32.CrossRef Bouhafs, F., Mackay, M., & Merabti, M. (2012). Links to the future: Communication requirements and challenges in the smart grid. IEEE Power and Energy Magazine, 10, 24–32.CrossRef
12.
go back to reference Wang, Q., He, T., Chen, K. C., Wang, J., Ko, B., Lin, Y., et al. (2012). Dynamic spectrum allocation under cognitive cell network for M2M applications. In Conference Record—Asilomar Conference on Signals, Systems and Computers. Wang, Q., He, T., Chen, K. C., Wang, J., Ko, B., Lin, Y., et al. (2012). Dynamic spectrum allocation under cognitive cell network for M2M applications. In Conference RecordAsilomar Conference on Signals, Systems and Computers.
13.
go back to reference Jiang, C., Chen, Y., Gao, Y., & Liu, K. J. R. (2013). Evolutionary game for joint spectrum sensing and access in cognitive radio networks. In GLOBECOM—IEEE Global Telecommunications Conference. Jiang, C., Chen, Y., Gao, Y., & Liu, K. J. R. (2013). Evolutionary game for joint spectrum sensing and access in cognitive radio networks. In GLOBECOMIEEE Global Telecommunications Conference.
14.
go back to reference Askari, M., Kavian, Y. S., Kaabi, H., & Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In IET Conference on Wireless Sensor Systems (WSS 2012). Askari, M., Kavian, Y. S., Kaabi, H., & Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In IET Conference on Wireless Sensor Systems (WSS 2012).
15.
go back to reference Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106–120.CrossRef Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106–120.CrossRef
16.
go back to reference Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for Cognitive Radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for Cognitive Radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef
17.
go back to reference Brettschneider, D., Hölker, D., Roer, P., & Tönjes, R. (2016). Cluster-based distributed algorithm for energy management in smart grids. Computer Science-Research and Development, 31, 17–23.CrossRef Brettschneider, D., Hölker, D., Roer, P., & Tönjes, R. (2016). Cluster-based distributed algorithm for energy management in smart grids. Computer Science-Research and Development, 31, 17–23.CrossRef
18.
go back to reference Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-layered clustering for power consumption profiling in smart grids. IEEE Access, 5, 18459–18468.CrossRef Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-layered clustering for power consumption profiling in smart grids. IEEE Access, 5, 18459–18468.CrossRef
19.
go back to reference Xishuang, D., Lijun, Q., & Lei, H. (2017). Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In 2017 IEEE international conference on Big Data and Smart Computing, BigComp 2017. Xishuang, D., Lijun, Q., & Lei, H. (2017). Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In 2017 IEEE international conference on Big Data and Smart Computing, BigComp 2017.
20.
go back to reference Vrbský, L., Da Silva, M. S., Cardoso, D. L., & Francês, C. R. L. (2017). Clustering techniques for data network planning in Smart Grids. In Proceedings of the 2017 IEEE 14th international conference on networking, sensing and control, ICNSC 2017. Vrbský, L., Da Silva, M. S., Cardoso, D. L., & Francês, C. R. L. (2017). Clustering techniques for data network planning in Smart Grids. In Proceedings of the 2017 IEEE 14th international conference on networking, sensing and control, ICNSC 2017.
21.
go back to reference Sreesha, A. A., Somal, S., & Lu, I. T. (2011). Cognitive Radio Based Wireless Sensor Network architecture for smart grid utility. In 2011 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2011. Sreesha, A. A., Somal, S., & Lu, I. T. (2011). Cognitive Radio Based Wireless Sensor Network architecture for smart grid utility. In 2011 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2011.
22.
go back to reference Huynh, C. K., & Lee, W. C. (2016). An efficient channel selection and power allocation scheme for TVWS based on interference analysis in smart metering infrastructure. Journal of Communications and Networks, 18(1), 50–64.CrossRef Huynh, C. K., & Lee, W. C. (2016). An efficient channel selection and power allocation scheme for TVWS based on interference analysis in smart metering infrastructure. Journal of Communications and Networks, 18(1), 50–64.CrossRef
23.
go back to reference He, W., Li, K., Zhou, Q., & Li, S. (2014). A CR spectrum allocation algorithm in smart grid wireless sensor network. Algorithms, 7, 510–522.CrossRef He, W., Li, K., Zhou, Q., & Li, S. (2014). A CR spectrum allocation algorithm in smart grid wireless sensor network. Algorithms, 7, 510–522.CrossRef
24.
go back to reference Yang, S., Wang, J., Han, Y., & Zhao, Q. (2016). Dynamic spectrum allocation algorithm based on fairness for smart grid communication networks. In 2016 35th Chinese Control Conference, pp. 6873–6877. Yang, S., Wang, J., Han, Y., & Zhao, Q. (2016). Dynamic spectrum allocation algorithm based on fairness for smart grid communication networks. In 2016 35th Chinese Control Conference, pp. 6873–6877.
25.
go back to reference Boustani, A., Jadliwala, M., Kwon, H. M., & Alamatsaz, N. (2015). Optimal resource allocation in Cognitive Smart Grid Networks. In 2015 12th annual IEEE Consumer Communications and Networking Conference, CCNC 2015. Boustani, A., Jadliwala, M., Kwon, H. M., & Alamatsaz, N. (2015). Optimal resource allocation in Cognitive Smart Grid Networks. In 2015 12th annual IEEE Consumer Communications and Networking Conference, CCNC 2015.
26.
go back to reference Miao, H., Chen, G., & Dong, Z. (2016). Enhanced evolutionary heuristic approaches for remote metering smart grid networks. IET Networks, 5(6), 153–161.CrossRef Miao, H., Chen, G., & Dong, Z. (2016). Enhanced evolutionary heuristic approaches for remote metering smart grid networks. IET Networks, 5(6), 153–161.CrossRef
27.
go back to reference Alam, S., Sarfraz, M., Usman, M. B., Ahmad, M. A., & Iftikhar, S. (2017). Dynamic resource allocation for cognitive radio based smart grid communication networks. International Journal of Advanced and Applied Sciences, 4(10), 76–83.CrossRef Alam, S., Sarfraz, M., Usman, M. B., Ahmad, M. A., & Iftikhar, S. (2017). Dynamic resource allocation for cognitive radio based smart grid communication networks. International Journal of Advanced and Applied Sciences, 4(10), 76–83.CrossRef
28.
go back to reference Ji, B., Li, Y., Cao, D., & Li, C. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 9545, 1–12.CrossRef Ji, B., Li, Y., Cao, D., & Li, C. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 9545, 1–12.CrossRef
29.
go back to reference Zhang, H., Jiang, D., Li, F., & Liu, K. (2017). Cluster-based resource allocation for spectrum-sharing femtocell networks. IEEE Access, 4, 8643–8656.CrossRef Zhang, H., Jiang, D., Li, F., & Liu, K. (2017). Cluster-based resource allocation for spectrum-sharing femtocell networks. IEEE Access, 4, 8643–8656.CrossRef
31.
go back to reference Peng, C., Zheng, H., & Zhao, B. Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access*. Mobile Networks and Applications, 11(4), 555–576.CrossRef Peng, C., Zheng, H., & Zhao, B. Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access*. Mobile Networks and Applications, 11(4), 555–576.CrossRef
32.
go back to reference Dai, J., Wang, S., & Member, S. (2017). Clustering-based spectrum sharing strategy for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 35(1), 228–237. Dai, J., Wang, S., & Member, S. (2017). Clustering-based spectrum sharing strategy for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 35(1), 228–237.
33.
go back to reference El, Tanab M., Member, S., Hamouda, W., & Member, S. (2017). Resource allocation for underlay cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(2), 1249–1276.CrossRef El, Tanab M., Member, S., Hamouda, W., & Member, S. (2017). Resource allocation for underlay cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(2), 1249–1276.CrossRef
34.
go back to reference Tabakovic, Z. (2016). Cognitive radio frequency assignment with interference weighting and categorization. EURASIP Journal on Wireless Communications and Networking, 16, 1–24. Tabakovic, Z. (2016). Cognitive radio frequency assignment with interference weighting and categorization. EURASIP Journal on Wireless Communications and Networking, 16, 1–24.
35.
go back to reference Hawa, M., Abu-al-nadi, D. I., Alsmadi, O. M. K., & Jafar, I. F. (2016). On using spectrum history to manage opportunistic access in cognitive radio networks. IEEE Access, 4, 5293–5308.CrossRef Hawa, M., Abu-al-nadi, D. I., Alsmadi, O. M. K., & Jafar, I. F. (2016). On using spectrum history to manage opportunistic access in cognitive radio networks. IEEE Access, 4, 5293–5308.CrossRef
36.
go back to reference Ranjan, R., Agrawal, N., & Joshi, S. (2020). Interference mitigation and capacity enhancement of cognitive radio networks using modified greedy algorithm/channel assignment and power allocation techniques. IET Communications, 14(9), 1502–1509.CrossRef Ranjan, R., Agrawal, N., & Joshi, S. (2020). Interference mitigation and capacity enhancement of cognitive radio networks using modified greedy algorithm/channel assignment and power allocation techniques. IET Communications, 14(9), 1502–1509.CrossRef
37.
go back to reference Ghosh, S., De, D., & Deb, P. (2019). Energy and spectrum optimization for 5G massive MIMO cognitive femtocell based mobile network using auction game theory. Wireless Personal Communications, 106(2), 555–576.CrossRef Ghosh, S., De, D., & Deb, P. (2019). Energy and spectrum optimization for 5G massive MIMO cognitive femtocell based mobile network using auction game theory. Wireless Personal Communications, 106(2), 555–576.CrossRef
38.
go back to reference Groenewald, B., Balyan, V., & Kahn, M. T. E. (2018). Fast channel load algorithm for downlink of multi-rate MC-DS-CDMA and smart grid communication. Journal of Applied Engineering Research, 13(20), 14607–14613. Groenewald, B., Balyan, V., & Kahn, M. T. E. (2018). Fast channel load algorithm for downlink of multi-rate MC-DS-CDMA and smart grid communication. Journal of Applied Engineering Research, 13(20), 14607–14613.
Metadata
Title
Channel Allocation with MIMO in Cognitive Radio Network
Author
Vipin Balyan
Publication date
19-08-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07704-5

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue