Skip to main content
Erschienen in: Wireless Personal Communications 2/2019

14.02.2019

Energy and Spectrum Optimization for 5G Massive MIMO Cognitive Femtocell Based Mobile Network Using Auction Game Theory

verfasst von: Subha Ghosh, Debashis De, Priti Deb

Erschienen in: Wireless Personal Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy and spectrum optimization for massive multiple input multiple output (MIMO) cognitive femtocell based fifth generation (5G) mobile network is developed using auction game. In 5G massive MIMO, multiple numbers of antennas are used to transmit the signal with same time frequency to maximize the number of users, who can communicate with less number of channels. Cognitive radio network (CRN) also increases spectrum efficiency by sharing primary users channel to transmit data for secondary users. In this article, cognitive femtocell base stations are treated as secondary base stations to win a channel by using auction game with utility function. Femtocell base stations bid for a channel with pricing value to the MIMO base station spectrum manager and the spectrum manager allocates spectrum to the femtocell base station based on maximum pricing value. Opportunistic spectrum access by femtocell using cognitive approach decreases number of active antennas in massive MIMO based network which reduces energy consumption. Simulation results show that the proposed network reduces ~ 70% power consumptions than the existing CRN and only MIMO CRN based strategies. Simulation results also presents that the massive MIMO cognitive femtocell network increases signal to interference plus noise ratio and spectral efficiency ~ 13% and ~ 20% respectively than the existing CRN and only MIMO CRN based approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.CrossRef Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.CrossRef
2.
Zurück zum Zitat Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). IEEE. Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). IEEE.
3.
Zurück zum Zitat Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.CrossRef Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.CrossRef
4.
Zurück zum Zitat Han, F., Zhao, S., Zhang, L., & Wu, J. (2016). Survey of strategies for switching off base stations in heterogeneous networks for greener 5G systems. IEEE Access, 4, 4959–4973.CrossRef Han, F., Zhao, S., Zhang, L., & Wu, J. (2016). Survey of strategies for switching off base stations in heterogeneous networks for greener 5G systems. IEEE Access, 4, 4959–4973.CrossRef
5.
Zurück zum Zitat Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access, 4, 2952–2964.CrossRef Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access, 4, 2952–2964.CrossRef
6.
Zurück zum Zitat Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y. C., & Li, S. (2017). A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks. IEEE Wireless Communications, 24(5), 44–51.CrossRef Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y. C., & Li, S. (2017). A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks. IEEE Wireless Communications, 24(5), 44–51.CrossRef
7.
Zurück zum Zitat Tang, M., & Xin, Y. (2016). Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Computer Networks, 100, 1–11.CrossRef Tang, M., & Xin, Y. (2016). Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Computer Networks, 100, 1–11.CrossRef
8.
Zurück zum Zitat Bengtsson, E. L., Rusek, F., Malkowsky, S., Tufvesson, F., Karlsson, P. C., & Edfors, O. (2017). A Simulation Framework for Multiple-Antenna Terminals in 5G Massive MIMO Systems. IEEE Access, 5, 26819–26831.CrossRef Bengtsson, E. L., Rusek, F., Malkowsky, S., Tufvesson, F., Karlsson, P. C., & Edfors, O. (2017). A Simulation Framework for Multiple-Antenna Terminals in 5G Massive MIMO Systems. IEEE Access, 5, 26819–26831.CrossRef
9.
Zurück zum Zitat Elderini, T., Kaabouch, N., & Reyes, H. (2017). Channel quality estimation metrics in cognitive radio networks: a survey. IET Communications, 11(8), 1173–1179.CrossRef Elderini, T., Kaabouch, N., & Reyes, H. (2017). Channel quality estimation metrics in cognitive radio networks: a survey. IET Communications, 11(8), 1173–1179.CrossRef
10.
Zurück zum Zitat Wang, H., Song, R., & Leung, S. H. (2016). Optimal uplink access in cognitive femtocell networks with adaptive modulation. IEEE Communications Letters, 20(5), 1050–1053.CrossRef Wang, H., Song, R., & Leung, S. H. (2016). Optimal uplink access in cognitive femtocell networks with adaptive modulation. IEEE Communications Letters, 20(5), 1050–1053.CrossRef
11.
Zurück zum Zitat Ho, T. M., Tran, N. H., Kazmi, S. A., & Hong, C. S. (2016). Distributed resource allocation for interference management and QoS guarantee in underlay cognitive femtocell networks. In Network operations and management symposium (APNOMS), 2016 18th Asia-Pacific (pp. 1–4). IEEE. Ho, T. M., Tran, N. H., Kazmi, S. A., & Hong, C. S. (2016). Distributed resource allocation for interference management and QoS guarantee in underlay cognitive femtocell networks. In Network operations and management symposium (APNOMS), 2016 18th Asia-Pacific (pp. 1–4). IEEE.
12.
Zurück zum Zitat Liu, Z., Li, S., Ma, K., Guan, X., & Li, X. (2017). Robust power allocation based on hierarchical game with consideration of different user requirements in two-tier femtocell networks. Computer Networks, 122, 179–190.CrossRef Liu, Z., Li, S., Ma, K., Guan, X., & Li, X. (2017). Robust power allocation based on hierarchical game with consideration of different user requirements in two-tier femtocell networks. Computer Networks, 122, 179–190.CrossRef
13.
Zurück zum Zitat Hao, W., & Yang, S. (2017). Small cell cluster-based resource allocation for wireless backhaul in two-tier heterogeneous networks with massive MIMO. IEEE Transactions on Vehicular Technology, 67(1), 509–523.CrossRef Hao, W., & Yang, S. (2017). Small cell cluster-based resource allocation for wireless backhaul in two-tier heterogeneous networks with massive MIMO. IEEE Transactions on Vehicular Technology, 67(1), 509–523.CrossRef
14.
Zurück zum Zitat Zhang, Q., Yang, H. H., Quek, T. Q., & Lee, J. (2017). Heterogeneous Cellular Networks with LoS and NLoS Transmissions—The Role of Massive MIMO and Small Cells. IEEE Transactions on Wireless Communications, 16(12), 7996–8010.CrossRef Zhang, Q., Yang, H. H., Quek, T. Q., & Lee, J. (2017). Heterogeneous Cellular Networks with LoS and NLoS Transmissions—The Role of Massive MIMO and Small Cells. IEEE Transactions on Wireless Communications, 16(12), 7996–8010.CrossRef
15.
Zurück zum Zitat Liu, Y., & Dong, L. (2014). Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Transactions on Wireless Communications, 13(9), 4807–4820.CrossRef Liu, Y., & Dong, L. (2014). Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Transactions on Wireless Communications, 13(9), 4807–4820.CrossRef
16.
Zurück zum Zitat Liu, D., Wang, L., Chen, Y., Zhang, T., Chai, K. K., & Elkashlan, M. (2015). Distributed energy efficient fair user association in massive MIMO enabled HetNets. IEEE Communications Letters, 19(10), 1770–1773.CrossRef Liu, D., Wang, L., Chen, Y., Zhang, T., Chai, K. K., & Elkashlan, M. (2015). Distributed energy efficient fair user association in massive MIMO enabled HetNets. IEEE Communications Letters, 19(10), 1770–1773.CrossRef
17.
Zurück zum Zitat Guozhen, X., An, L., Wei, J., Haige, X., & Wu, L. (2015). Energy-efficient beamforming for two-tier massive MIMO downlink. China Communications, 12(10), 64–75.CrossRef Guozhen, X., An, L., Wei, J., Haige, X., & Wu, L. (2015). Energy-efficient beamforming for two-tier massive MIMO downlink. China Communications, 12(10), 64–75.CrossRef
18.
Zurück zum Zitat Cui, M., Hu, B. J., Li, X., Chen, H., Hu, S., & Wang, Y. (2017). Energy-efficient power control algorithms in massive MIMO cognitive radio networks. IEEE Access, 5, 1164–1177.CrossRef Cui, M., Hu, B. J., Li, X., Chen, H., Hu, S., & Wang, Y. (2017). Energy-efficient power control algorithms in massive MIMO cognitive radio networks. IEEE Access, 5, 1164–1177.CrossRef
19.
Zurück zum Zitat Cui, M., Hu, B. J., Tang, J., & Wang, Y. (2017). Energy-efficient Joint Power Allocation in Uplink Massive MIMO Cognitive Radio Networks with Imperfect CSI. IEEE Access, 5, 27611–27621.CrossRef Cui, M., Hu, B. J., Tang, J., & Wang, Y. (2017). Energy-efficient Joint Power Allocation in Uplink Massive MIMO Cognitive Radio Networks with Imperfect CSI. IEEE Access, 5, 27611–27621.CrossRef
20.
Zurück zum Zitat Hao, W., Muta, O., Gacanin, H., & Furukawa, H. (2017). Power allocation for massive MIMO cognitive radio networks with pilot sharing under SINR requirements of primary users. IEEE Transactions on Vehicular Technology, 67(2), 1174–1186.CrossRef Hao, W., Muta, O., Gacanin, H., & Furukawa, H. (2017). Power allocation for massive MIMO cognitive radio networks with pilot sharing under SINR requirements of primary users. IEEE Transactions on Vehicular Technology, 67(2), 1174–1186.CrossRef
21.
Zurück zum Zitat Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. (2017). Game Theory for 5G Wireless Networks. Mobile Networks and Applications, 22(3), 526–528.CrossRef Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. (2017). Game Theory for 5G Wireless Networks. Mobile Networks and Applications, 22(3), 526–528.CrossRef
22.
Zurück zum Zitat Eraslan, B., Gozupek, D., & Alagoz, F. (2011). An auction theory based algorithm for throughput maximizing scheduling in centralized cognitive radio networks. IEEE Communications Letters, 15(7), 734–736.CrossRef Eraslan, B., Gozupek, D., & Alagoz, F. (2011). An auction theory based algorithm for throughput maximizing scheduling in centralized cognitive radio networks. IEEE Communications Letters, 15(7), 734–736.CrossRef
23.
Zurück zum Zitat Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H. H. (2010). Spectrum sharing in cognitive radio networks—An auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(3), 587–596.CrossRef Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H. H. (2010). Spectrum sharing in cognitive radio networks—An auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(3), 587–596.CrossRef
24.
Zurück zum Zitat Jayaweera, S. K., Bkassiny, M., & Avery, K. A. (2011). Asymmetric cooperative communications based spectrum leasing via auctions in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(8), 2716–2724.CrossRef Jayaweera, S. K., Bkassiny, M., & Avery, K. A. (2011). Asymmetric cooperative communications based spectrum leasing via auctions in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(8), 2716–2724.CrossRef
25.
Zurück zum Zitat Chen, Y., Wu, Y., Wang, B., & Liu, K. R. (2010). Spectrum auction games for multimedia streaming over cognitive radio networks. IEEE Transactions on Communications, 58(8), 2381–2390.CrossRef Chen, Y., Wu, Y., Wang, B., & Liu, K. R. (2010). Spectrum auction games for multimedia streaming over cognitive radio networks. IEEE Transactions on Communications, 58(8), 2381–2390.CrossRef
26.
Zurück zum Zitat Feng, M., Mao, S., & Jiang, T. (2017). BOOST: Base station on-off switching strategy for green massive MIMO HetNets. IEEE Transactions on Wireless Communications, 16(11), 7319–7332.CrossRef Feng, M., Mao, S., & Jiang, T. (2017). BOOST: Base station on-off switching strategy for green massive MIMO HetNets. IEEE Transactions on Wireless Communications, 16(11), 7319–7332.CrossRef
27.
Zurück zum Zitat Hossain, M. A., Cavdar, C., Bjornson, E., & Jantti, R. (2017). Energy saving game for massive MIMO: Coping with daily load variation. IEEE Transactions on Vehicular Technology, 67(3), 2301–2313.CrossRef Hossain, M. A., Cavdar, C., Bjornson, E., & Jantti, R. (2017). Energy saving game for massive MIMO: Coping with daily load variation. IEEE Transactions on Vehicular Technology, 67(3), 2301–2313.CrossRef
28.
Zurück zum Zitat Badoi, C. I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.CrossRef Badoi, C. I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.CrossRef
29.
Zurück zum Zitat Prasad, R. (2014). 5G: 2020 and beyond. London: River Publishers. Prasad, R. (2014). 5G: 2020 and beyond. London: River Publishers.
30.
Zurück zum Zitat Anwar, S., & Prasad, R. (2018). Framework for future telemedicine planning and infrastructure using 5G technology. Wireless Personal Communications, 100, 1–16.CrossRef Anwar, S., & Prasad, R. (2018). Framework for future telemedicine planning and infrastructure using 5G technology. Wireless Personal Communications, 100, 1–16.CrossRef
31.
Zurück zum Zitat Prasad, R. (2015). 5G Revolution through WISDOM. Wireless Personal Communications, 81(4), 1351–1357.CrossRef Prasad, R. (2015). 5G Revolution through WISDOM. Wireless Personal Communications, 81(4), 1351–1357.CrossRef
32.
Zurück zum Zitat Prasad, R. (Ed.). (2016). 5G outlook-innovations and applications. London: River Publishers. Prasad, R. (Ed.). (2016). 5G outlook-innovations and applications. London: River Publishers.
33.
Zurück zum Zitat Badoi, C. I., Prasad, N., & Prasad, R. (2016). Virtualization and Scheduling Methods for 5G Cognitive Radio Based Wireless Networks. Wireless Personal Communications, 89(2), 599–619.CrossRef Badoi, C. I., Prasad, N., & Prasad, R. (2016). Virtualization and Scheduling Methods for 5G Cognitive Radio Based Wireless Networks. Wireless Personal Communications, 89(2), 599–619.CrossRef
34.
Zurück zum Zitat Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on smart city implementation. Wireless Personal Communications, 100, 1–16.CrossRef Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on smart city implementation. Wireless Personal Communications, 100, 1–16.CrossRef
35.
Zurück zum Zitat Tripathi, P. S. M., & Prasad, R. (2018). Spectrum for 5G services. Wireless Personal Communications, 100, 1–17.CrossRef Tripathi, P. S. M., & Prasad, R. (2018). Spectrum for 5G services. Wireless Personal Communications, 100, 1–17.CrossRef
36.
Zurück zum Zitat Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on industry. Wireless Personal Communications, 100, 1–15.CrossRef Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on industry. Wireless Personal Communications, 100, 1–15.CrossRef
37.
Zurück zum Zitat Agiwal, M., Saxena, N., & Roy, A. (2018). Ten Commandments of Emerging 5G Networks. Wireless Personal Communications, 98(3), 2591–2621.CrossRef Agiwal, M., Saxena, N., & Roy, A. (2018). Ten Commandments of Emerging 5G Networks. Wireless Personal Communications, 98(3), 2591–2621.CrossRef
38.
Zurück zum Zitat Gonzalez-Coma, J. P., Rodriguez-Fernandez, J., Gonzalez-Prelcic, N., Castedo, L., & Heath, R. W. (2018). Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 12(2), 353–367.CrossRef Gonzalez-Coma, J. P., Rodriguez-Fernandez, J., Gonzalez-Prelcic, N., Castedo, L., & Heath, R. W. (2018). Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 12(2), 353–367.CrossRef
39.
Zurück zum Zitat Rajoria, S., Trivedi, A., & Godfrey, W. W. (2018). A comprehensive survey: Small cell meets massive MIMO. Physical Communication, 26, 40–49.CrossRef Rajoria, S., Trivedi, A., & Godfrey, W. W. (2018). A comprehensive survey: Small cell meets massive MIMO. Physical Communication, 26, 40–49.CrossRef
40.
Zurück zum Zitat Hao, W., Muta, O., Gacanin, H., & Furukawa, H. (2017). Dynamic small cell clustering and non-cooperative game-based precoding design for two-tier heterogeneous networks with massive MIMO. IEEE Transactions on Communications, 66(2), 675–687.CrossRef Hao, W., Muta, O., Gacanin, H., & Furukawa, H. (2017). Dynamic small cell clustering and non-cooperative game-based precoding design for two-tier heterogeneous networks with massive MIMO. IEEE Transactions on Communications, 66(2), 675–687.CrossRef
42.
Zurück zum Zitat Bagadi, K. P. (2017). MC–CDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion. International Journal of Communication Systems, 30(16), e3328.CrossRef Bagadi, K. P. (2017). MC–CDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion. International Journal of Communication Systems, 30(16), e3328.CrossRef
43.
Zurück zum Zitat Bagadi, K. P., Annepu, V., & Das, S. (2016). Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Physical Communication, 20, 93–108.CrossRef Bagadi, K. P., Annepu, V., & Das, S. (2016). Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Physical Communication, 20, 93–108.CrossRef
44.
Zurück zum Zitat Bagadi, K. P., & Das, S. (2014). Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system. International Journal of Communication Systems, 27(12), 3837–3854.CrossRef Bagadi, K. P., & Das, S. (2014). Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system. International Journal of Communication Systems, 27(12), 3837–3854.CrossRef
Metadaten
Titel
Energy and Spectrum Optimization for 5G Massive MIMO Cognitive Femtocell Based Mobile Network Using Auction Game Theory
verfasst von
Subha Ghosh
Debashis De
Priti Deb
Publikationsdatum
14.02.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06179-3

Weitere Artikel der Ausgabe 2/2019

Wireless Personal Communications 2/2019 Zur Ausgabe

Neuer Inhalt