Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

19.08.2020

Channel Allocation with MIMO in Cognitive Radio Network

verfasst von: Vipin Balyan

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bulk volume and diverse data generated by Smart grid applications require use of Cognitive Radio (CR) technology for efficient handling. The CR technology proved out to be the most efficient technology which improves spectral utilization of any wireless network. The work in this paper is on the assignment of spectrum to the secondary users when primary user are not using. The work uses hybrid of CR and MIMO technology with clustering of gate ways, the channel allocation is done by taking real time environment in consideration. In this paper, three assignment schemes are proposed fair (F-MIMO) scheme, priority (P-MIMO) scheme and small clusters (CC-MIMO). The F-MIMO is used in low traffic condition, when all the HGWs sends the periodic data. The P-MIMO instead of reserving channels for priority user’s places non priority users in buffer in conditions when no vacant channel is available for priority users, this scheme is used in moderate traffic conditions. For the high traffic load, CC-MIMO provides priority and also borrows channels from nearby gate ways. The simulations are performed in three clusters. The simulations are done under moderate traffic using P-MIMO to compare utility of gateway with sensing bandwidth using different sensing costs. The proposed three schemes are compared in fairness and user rewards in both scenarios when borrowing is allowed and not allowed. The CC-MIMO performed optimal as compared to F-MIMO and P-MIMO which are comparable to other schemes in literature. The number of channel allocations and maximum sum reward are simulated with respect to the number of users in presence of priority users.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khan, A. A., Rehmani, M. H., & Reisslein, M. (2015). Cognitive radio for smart grids : Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys & Tutorials, 18(1), 860–898.CrossRef Khan, A. A., Rehmani, M. H., & Reisslein, M. (2015). Cognitive radio for smart grids : Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys & Tutorials, 18(1), 860–898.CrossRef
2.
Zurück zum Zitat Alam, S., Sohail, M. F., Ghauri, S. A., Qureshi, I. M., & Aqdas, N. (2017). Cognitive radio based smart grid communication network. Renewable and Sustainable Energy Reviews, 72, 535–548.CrossRef Alam, S., Sohail, M. F., Ghauri, S. A., Qureshi, I. M., & Aqdas, N. (2017). Cognitive radio based smart grid communication network. Renewable and Sustainable Energy Reviews, 72, 535–548.CrossRef
3.
Zurück zum Zitat Faheem, M., & Cagri-Gungor, V. (2017). Capacity and spectrum-aware communication framework for wireless sensor network-based smart grid applications. Computer Standards and Interfaces, 53, 48–58.CrossRef Faheem, M., & Cagri-Gungor, V. (2017). Capacity and spectrum-aware communication framework for wireless sensor network-based smart grid applications. Computer Standards and Interfaces, 53, 48–58.CrossRef
4.
Zurück zum Zitat Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing Journal, 68, 910–922.CrossRef Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing Journal, 68, 910–922.CrossRef
5.
Zurück zum Zitat Faheem, M., & Gungor, V. C. (2018). MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Generation Computer Systems, 82, 354–378.CrossRef Faheem, M., & Gungor, V. C. (2018). MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Generation Computer Systems, 82, 354–378.CrossRef
6.
Zurück zum Zitat Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wireless Communications, 20, 125–132.CrossRef Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wireless Communications, 20, 125–132.CrossRef
7.
Zurück zum Zitat Xu, L., Qian, F., Li, Y., Li, Q., Yang, Y. W., & Xu, J. (2016). Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 173, 1250–1256.CrossRef Xu, L., Qian, F., Li, Y., Li, Q., Yang, Y. W., & Xu, J. (2016). Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 173, 1250–1256.CrossRef
8.
Zurück zum Zitat Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46, 80–85.CrossRef Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46, 80–85.CrossRef
9.
Zurück zum Zitat Laverty, D. M., Morrow, D. J., Best, R., & Crossley, P. A. (2010). Telecommunications for smart grid: Backhaul solutions for the distribution network. In: IEEE PES General Meeting, PES 2010. Laverty, D. M., Morrow, D. J., Best, R., & Crossley, P. A. (2010). Telecommunications for smart grid: Backhaul solutions for the distribution network. In: IEEE PES General Meeting, PES 2010.
10.
Zurück zum Zitat Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15, 5–20.CrossRef Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15, 5–20.CrossRef
11.
Zurück zum Zitat Bouhafs, F., Mackay, M., & Merabti, M. (2012). Links to the future: Communication requirements and challenges in the smart grid. IEEE Power and Energy Magazine, 10, 24–32.CrossRef Bouhafs, F., Mackay, M., & Merabti, M. (2012). Links to the future: Communication requirements and challenges in the smart grid. IEEE Power and Energy Magazine, 10, 24–32.CrossRef
12.
Zurück zum Zitat Wang, Q., He, T., Chen, K. C., Wang, J., Ko, B., Lin, Y., et al. (2012). Dynamic spectrum allocation under cognitive cell network for M2M applications. In Conference Record—Asilomar Conference on Signals, Systems and Computers. Wang, Q., He, T., Chen, K. C., Wang, J., Ko, B., Lin, Y., et al. (2012). Dynamic spectrum allocation under cognitive cell network for M2M applications. In Conference RecordAsilomar Conference on Signals, Systems and Computers.
13.
Zurück zum Zitat Jiang, C., Chen, Y., Gao, Y., & Liu, K. J. R. (2013). Evolutionary game for joint spectrum sensing and access in cognitive radio networks. In GLOBECOM—IEEE Global Telecommunications Conference. Jiang, C., Chen, Y., Gao, Y., & Liu, K. J. R. (2013). Evolutionary game for joint spectrum sensing and access in cognitive radio networks. In GLOBECOMIEEE Global Telecommunications Conference.
14.
Zurück zum Zitat Askari, M., Kavian, Y. S., Kaabi, H., & Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In IET Conference on Wireless Sensor Systems (WSS 2012). Askari, M., Kavian, Y. S., Kaabi, H., & Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In IET Conference on Wireless Sensor Systems (WSS 2012).
15.
Zurück zum Zitat Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106–120.CrossRef Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106–120.CrossRef
16.
Zurück zum Zitat Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for Cognitive Radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for Cognitive Radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef
17.
Zurück zum Zitat Brettschneider, D., Hölker, D., Roer, P., & Tönjes, R. (2016). Cluster-based distributed algorithm for energy management in smart grids. Computer Science-Research and Development, 31, 17–23.CrossRef Brettschneider, D., Hölker, D., Roer, P., & Tönjes, R. (2016). Cluster-based distributed algorithm for energy management in smart grids. Computer Science-Research and Development, 31, 17–23.CrossRef
18.
Zurück zum Zitat Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-layered clustering for power consumption profiling in smart grids. IEEE Access, 5, 18459–18468.CrossRef Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-layered clustering for power consumption profiling in smart grids. IEEE Access, 5, 18459–18468.CrossRef
19.
Zurück zum Zitat Xishuang, D., Lijun, Q., & Lei, H. (2017). Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In 2017 IEEE international conference on Big Data and Smart Computing, BigComp 2017. Xishuang, D., Lijun, Q., & Lei, H. (2017). Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In 2017 IEEE international conference on Big Data and Smart Computing, BigComp 2017.
20.
Zurück zum Zitat Vrbský, L., Da Silva, M. S., Cardoso, D. L., & Francês, C. R. L. (2017). Clustering techniques for data network planning in Smart Grids. In Proceedings of the 2017 IEEE 14th international conference on networking, sensing and control, ICNSC 2017. Vrbský, L., Da Silva, M. S., Cardoso, D. L., & Francês, C. R. L. (2017). Clustering techniques for data network planning in Smart Grids. In Proceedings of the 2017 IEEE 14th international conference on networking, sensing and control, ICNSC 2017.
21.
Zurück zum Zitat Sreesha, A. A., Somal, S., & Lu, I. T. (2011). Cognitive Radio Based Wireless Sensor Network architecture for smart grid utility. In 2011 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2011. Sreesha, A. A., Somal, S., & Lu, I. T. (2011). Cognitive Radio Based Wireless Sensor Network architecture for smart grid utility. In 2011 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2011.
22.
Zurück zum Zitat Huynh, C. K., & Lee, W. C. (2016). An efficient channel selection and power allocation scheme for TVWS based on interference analysis in smart metering infrastructure. Journal of Communications and Networks, 18(1), 50–64.CrossRef Huynh, C. K., & Lee, W. C. (2016). An efficient channel selection and power allocation scheme for TVWS based on interference analysis in smart metering infrastructure. Journal of Communications and Networks, 18(1), 50–64.CrossRef
23.
Zurück zum Zitat He, W., Li, K., Zhou, Q., & Li, S. (2014). A CR spectrum allocation algorithm in smart grid wireless sensor network. Algorithms, 7, 510–522.CrossRef He, W., Li, K., Zhou, Q., & Li, S. (2014). A CR spectrum allocation algorithm in smart grid wireless sensor network. Algorithms, 7, 510–522.CrossRef
24.
Zurück zum Zitat Yang, S., Wang, J., Han, Y., & Zhao, Q. (2016). Dynamic spectrum allocation algorithm based on fairness for smart grid communication networks. In 2016 35th Chinese Control Conference, pp. 6873–6877. Yang, S., Wang, J., Han, Y., & Zhao, Q. (2016). Dynamic spectrum allocation algorithm based on fairness for smart grid communication networks. In 2016 35th Chinese Control Conference, pp. 6873–6877.
25.
Zurück zum Zitat Boustani, A., Jadliwala, M., Kwon, H. M., & Alamatsaz, N. (2015). Optimal resource allocation in Cognitive Smart Grid Networks. In 2015 12th annual IEEE Consumer Communications and Networking Conference, CCNC 2015. Boustani, A., Jadliwala, M., Kwon, H. M., & Alamatsaz, N. (2015). Optimal resource allocation in Cognitive Smart Grid Networks. In 2015 12th annual IEEE Consumer Communications and Networking Conference, CCNC 2015.
26.
Zurück zum Zitat Miao, H., Chen, G., & Dong, Z. (2016). Enhanced evolutionary heuristic approaches for remote metering smart grid networks. IET Networks, 5(6), 153–161.CrossRef Miao, H., Chen, G., & Dong, Z. (2016). Enhanced evolutionary heuristic approaches for remote metering smart grid networks. IET Networks, 5(6), 153–161.CrossRef
27.
Zurück zum Zitat Alam, S., Sarfraz, M., Usman, M. B., Ahmad, M. A., & Iftikhar, S. (2017). Dynamic resource allocation for cognitive radio based smart grid communication networks. International Journal of Advanced and Applied Sciences, 4(10), 76–83.CrossRef Alam, S., Sarfraz, M., Usman, M. B., Ahmad, M. A., & Iftikhar, S. (2017). Dynamic resource allocation for cognitive radio based smart grid communication networks. International Journal of Advanced and Applied Sciences, 4(10), 76–83.CrossRef
28.
Zurück zum Zitat Ji, B., Li, Y., Cao, D., & Li, C. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 9545, 1–12.CrossRef Ji, B., Li, Y., Cao, D., & Li, C. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 9545, 1–12.CrossRef
29.
Zurück zum Zitat Zhang, H., Jiang, D., Li, F., & Liu, K. (2017). Cluster-based resource allocation for spectrum-sharing femtocell networks. IEEE Access, 4, 8643–8656.CrossRef Zhang, H., Jiang, D., Li, F., & Liu, K. (2017). Cluster-based resource allocation for spectrum-sharing femtocell networks. IEEE Access, 4, 8643–8656.CrossRef
31.
Zurück zum Zitat Peng, C., Zheng, H., & Zhao, B. Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access*. Mobile Networks and Applications, 11(4), 555–576.CrossRef Peng, C., Zheng, H., & Zhao, B. Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access*. Mobile Networks and Applications, 11(4), 555–576.CrossRef
32.
Zurück zum Zitat Dai, J., Wang, S., & Member, S. (2017). Clustering-based spectrum sharing strategy for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 35(1), 228–237. Dai, J., Wang, S., & Member, S. (2017). Clustering-based spectrum sharing strategy for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 35(1), 228–237.
33.
Zurück zum Zitat El, Tanab M., Member, S., Hamouda, W., & Member, S. (2017). Resource allocation for underlay cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(2), 1249–1276.CrossRef El, Tanab M., Member, S., Hamouda, W., & Member, S. (2017). Resource allocation for underlay cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(2), 1249–1276.CrossRef
34.
Zurück zum Zitat Tabakovic, Z. (2016). Cognitive radio frequency assignment with interference weighting and categorization. EURASIP Journal on Wireless Communications and Networking, 16, 1–24. Tabakovic, Z. (2016). Cognitive radio frequency assignment with interference weighting and categorization. EURASIP Journal on Wireless Communications and Networking, 16, 1–24.
35.
Zurück zum Zitat Hawa, M., Abu-al-nadi, D. I., Alsmadi, O. M. K., & Jafar, I. F. (2016). On using spectrum history to manage opportunistic access in cognitive radio networks. IEEE Access, 4, 5293–5308.CrossRef Hawa, M., Abu-al-nadi, D. I., Alsmadi, O. M. K., & Jafar, I. F. (2016). On using spectrum history to manage opportunistic access in cognitive radio networks. IEEE Access, 4, 5293–5308.CrossRef
36.
Zurück zum Zitat Ranjan, R., Agrawal, N., & Joshi, S. (2020). Interference mitigation and capacity enhancement of cognitive radio networks using modified greedy algorithm/channel assignment and power allocation techniques. IET Communications, 14(9), 1502–1509.CrossRef Ranjan, R., Agrawal, N., & Joshi, S. (2020). Interference mitigation and capacity enhancement of cognitive radio networks using modified greedy algorithm/channel assignment and power allocation techniques. IET Communications, 14(9), 1502–1509.CrossRef
37.
Zurück zum Zitat Ghosh, S., De, D., & Deb, P. (2019). Energy and spectrum optimization for 5G massive MIMO cognitive femtocell based mobile network using auction game theory. Wireless Personal Communications, 106(2), 555–576.CrossRef Ghosh, S., De, D., & Deb, P. (2019). Energy and spectrum optimization for 5G massive MIMO cognitive femtocell based mobile network using auction game theory. Wireless Personal Communications, 106(2), 555–576.CrossRef
38.
Zurück zum Zitat Groenewald, B., Balyan, V., & Kahn, M. T. E. (2018). Fast channel load algorithm for downlink of multi-rate MC-DS-CDMA and smart grid communication. Journal of Applied Engineering Research, 13(20), 14607–14613. Groenewald, B., Balyan, V., & Kahn, M. T. E. (2018). Fast channel load algorithm for downlink of multi-rate MC-DS-CDMA and smart grid communication. Journal of Applied Engineering Research, 13(20), 14607–14613.
Metadaten
Titel
Channel Allocation with MIMO in Cognitive Radio Network
verfasst von
Vipin Balyan
Publikationsdatum
19.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07704-5

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt