Skip to main content
Top
Published in: The International Journal of Life Cycle Assessment 10/2016

24-04-2016 | LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS

Characterization model to assess ocean acidification within life cycle assessment

Authors: Vanessa Bach, Franziska Möller, Natalia Finogenova, Yasmine Emara, Matthias Finkbeiner

Published in: The International Journal of Life Cycle Assessment | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Ocean acidification due to the absorption of increasing amounts of atmospheric carbon dioxide has become a severe problem in the recent years as more and more marine species are influenced by the decreasing pH value as well as by the reduced carbonate ion concentration. So far, no characterization model exists for ocean acidification. This paper aims to establish such a characterization model to allow for the necessary future inclusion of ocean acidification in life cycle assessment (LCA) case studies.

Methods

Based on a cause-effect chain for ocean acidification, the substances carbon monoxide, carbon dioxide, and methane were identified as relevant for this impact category. In a next step, the fate factor representing the substances’ share absorbed by the ocean due to conversion, distribution, and dissolution is determined. Then, the fate sensitivity factor is established reflecting the changes in the marine environment due to the amount of released hydrogen ions per gram of substance (category indicator). Finally, fate and fate sensitivity factors of each substance are multiplied and set in relation to the reference substance, carbon dioxide, thereby delivering the respective characterization factors (in kg CO2 eq) at midpoint level.

Results and discussion

Characterization factors are provided for carbon monoxide (0.87 kg CO2 eq), carbon dioxide (1 kg CO2 eq), and methane (0.84 kg CO2 eq), which allow conversion of inventory results of these substances into category indicator results for ocean acidification. Inventory data of these substances is available in common LCA databases and software. Hence, the developed method is directly applicable. In a subsequent contribution analysis, the relative contribution of the three selected substances, along with other known acidifying substances, to the ocean acidification potential of 100 different materials was studied. The contribution analysis confirmed carbon dioxide as the predominant substance responsible for more than 97 % of the total ocean acidification potential. However, the influence of other acidifying substances, e.g., sulfur dioxide, should not be neglected.

Conclusions

Evaluation of substances contributing to ocean acidification is of growing importance since the acidity of oceans has been increasing steadily over the last decades. The introduced approach can be applied to evaluate product system related impacts of ocean acidification and include those into current LCA practice.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Azevedo LB, De Schryver AM, Hendriks AJ, Huijbregts MAJ (2015) Calcifying species sensitivity distributions for ocean acidification. Environ Sci Technol 49:1495–1500CrossRef Azevedo LB, De Schryver AM, Hendriks AJ, Huijbregts MAJ (2015) Calcifying species sensitivity distributions for ocean acidification. Environ Sci Technol 49:1495–1500CrossRef
go back to reference Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:74–81CrossRef Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:74–81CrossRef
go back to reference Carew M (2010) UNEP emerging issues: environmental consequences of ocean acidification: a threat to food security. UNEP Carew M (2010) UNEP emerging issues: environmental consequences of ocean acidification: a threat to food security. UNEP
go back to reference Dickson A (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. Guide to best practices for ocean acidification research and data reporting. pp. 17–40 Dickson A (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. Guide to best practices for ocean acidification research and data reporting. pp. 17–40
go back to reference Doney SC, Mahowald N, Lima I et al (2007) Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc Natl Acad Sci 104:14580–14585CrossRef Doney SC, Mahowald N, Lima I et al (2007) Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc Natl Acad Sci 104:14580–14585CrossRef
go back to reference Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRef Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRef
go back to reference Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography 4:50–58CrossRef Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography 4:50–58CrossRef
go back to reference Dunford RW, Donoghue DNM, Burt TP (2012) Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions. Environ Pollut 167:58–69CrossRef Dunford RW, Donoghue DNM, Burt TP (2012) Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions. Environ Pollut 167:58–69CrossRef
go back to reference Eisler R (2011) Oceanic acidification: a comprehensive overview, 1st edn. CRC, Boca RatonCrossRef Eisler R (2011) Oceanic acidification: a comprehensive overview, 1st edn. CRC, Boca RatonCrossRef
go back to reference Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRef Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRef
go back to reference Goedkoop M, Heijungs R, Huijbregts M et al. (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: characterisation Goedkoop M, Heijungs R, Huijbregts M et al. (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: characterisation
go back to reference Hall-Spencer JM, Rodolfo-Metalpa R, Martin S et al (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRef Hall-Spencer JM, Rodolfo-Metalpa R, Martin S et al (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRef
go back to reference Harrould-Kolieb ER, Herr D (2012) Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC. Clim Pol 12:378–389CrossRef Harrould-Kolieb ER, Herr D (2012) Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC. Clim Pol 12:378–389CrossRef
go back to reference Heijungs R, Guinée JB, Huppes G et al (1992) Environmental life cycle assessment of products—guide and backgrounds (part 2). CML, Leiden Heijungs R, Guinée JB, Huppes G et al (1992) Environmental life cycle assessment of products—guide and backgrounds (part 2). CML, Leiden
go back to reference Holloway AM, Wayne RP (2010) Atmospheric chemistry. Royal Society of Chemistry, London Holloway AM, Wayne RP (2010) Atmospheric chemistry. Royal Society of Chemistry, London
go back to reference Hood M, Broadgate W, Urban E, Gaffney O (2011) Ocean acidification—a summary for policymakers from the second symposium on the ocean in a high-CO2 world Hood M, Broadgate W, Urban E, Gaffney O (2011) Ocean acidification—a summary for policymakers from the second symposium on the ocean in a high-CO2 world
go back to reference Hurst TP, Fernandez ER, Mathis JT (2013) Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J Mar Sci 70:812–822CrossRef Hurst TP, Fernandez ER, Mathis JT (2013) Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J Mar Sci 70:812–822CrossRef
go back to reference Intergovernmental Panel on Climate Change (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge Intergovernmental Panel on Climate Change (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
go back to reference Intergovernmental Panel on Climate Change (2014) IPCC, 2014: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1132 Intergovernmental Panel on Climate Change (2014) IPCC, 2014: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1132
go back to reference Isaksen ISA (2012) Tropospheric ozone: regional and global scale interactions. Springer Science & Business Media, Berlin Isaksen ISA (2012) Tropospheric ozone: regional and global scale interactions. Springer Science & Business Media, Berlin
go back to reference ISO 14044 (2006) Environmental management. Life cycle assessment. Requirements and guidelines (EN ISO 14044:2006) ISO 14044 (2006) Environmental management. Life cycle assessment. Requirements and guidelines (EN ISO 14044:2006)
go back to reference Jolliet O, Bare J, Boulay A-M et al (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967CrossRef Jolliet O, Bare J, Boulay A-M et al (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967CrossRef
go back to reference Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRef Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRef
go back to reference Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, WeinheimCrossRef Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, WeinheimCrossRef
go back to reference Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: biological responses to ocean acidification. Ecol Lett 13:1419–1434CrossRef Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: biological responses to ocean acidification. Ecol Lett 13:1419–1434CrossRef
go back to reference Lindeijer EW, Müller-Wenk R, Steen B (2002) Life cycle impact assessment: striving towards best practice. Chapter 2: impact assessment of resources and land use. SETAC, Pensacola, pp 11–62, ISBN 1-880611 Lindeijer EW, Müller-Wenk R, Steen B (2002) Life cycle impact assessment: striving towards best practice. Chapter 2: impact assessment of resources and land use. SETAC, Pensacola, pp 11–62, ISBN 1-880611
go back to reference Margni M, Gloria T, Bare J et al. (2008) Guidance on how to move from current practice to recommended practice in life cycle impact assessment. UNEP/SETAC Life Cycle Initiative Publication Margni M, Gloria T, Bare J et al. (2008) Guidance on how to move from current practice to recommended practice in life cycle impact assessment. UNEP/SETAC Life Cycle Initiative Publication
go back to reference Michaelidis B, Ouzounis C, Paleras A, Pörtner H (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRef Michaelidis B, Ouzounis C, Paleras A, Pörtner H (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRef
go back to reference Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718CrossRef Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718CrossRef
go back to reference Rhein M, Rintoul SR, Aoki S et al (2013) Observations: ocean. Cambridge University Press, Cambridge, pp 255–316 Rhein M, Rintoul SR, Aoki S et al (2013) Observations: ocean. Cambridge University Press, Cambridge, pp 255–316
go back to reference Royal Society Great Britain (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Clyvedon Press Ltd, Cardiff Royal Society Great Britain (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Clyvedon Press Ltd, Cardiff
go back to reference Schlesinger WH (2005) Biogeochemistry: treatise on geochemistry, volume 8, 1st edn. Elsevier Science, Philadelphia Schlesinger WH (2005) Biogeochemistry: treatise on geochemistry, volume 8, 1st edn. Elsevier Science, Philadelphia
go back to reference Schroeder T (2013) World ocean review. Vol. 2: the future of fish—the fisheries of the future. Maribus gGmbH, Hamburg Schroeder T (2013) World ocean review. Vol. 2: the future of fish—the fisheries of the future. Maribus gGmbH, Hamburg
go back to reference Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, Hoboken Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, Hoboken
go back to reference Thinkstep (2016) GaBi product sustainability software Thinkstep (2016) GaBi product sustainability software
go back to reference Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197CrossRef Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197CrossRef
go back to reference Wuebbles DJ, Hayhoe K (2000) Atmospheric methane: trends and impacts. In: Non-CO2 greenhouse gases: scientific understanding, control and implementation. Springer, pp. 1–44 Wuebbles DJ, Hayhoe K (2000) Atmospheric methane: trends and impacts. In: Non-CO2 greenhouse gases: scientific understanding, control and implementation. Springer, pp. 1–44
go back to reference Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRef Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRef
go back to reference Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam
Metadata
Title
Characterization model to assess ocean acidification within life cycle assessment
Authors
Vanessa Bach
Franziska Möller
Natalia Finogenova
Yasmine Emara
Matthias Finkbeiner
Publication date
24-04-2016
Publisher
Springer Berlin Heidelberg
Published in
The International Journal of Life Cycle Assessment / Issue 10/2016
Print ISSN: 0948-3349
Electronic ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-016-1121-x

Other articles of this Issue 10/2016

The International Journal of Life Cycle Assessment 10/2016 Go to the issue