Skip to main content
Top
Published in: Cellulose 1/2016

24-10-2015 | Original Paper

Characterization of cellulose nanofiber sheets from different refining processes

Authors: Kohji Nobuta, Hiroshi Teramura, Hiroaki Ito, Chizuru Hongo, Hideo Kawaguchi, Chiaki Ogino, Akihiko Kondo, Takashi Nishino

Published in: Cellulose | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Four types of kenaf bast fibers were prepared via a combination of Wise treatments, for delignification, and alkaline treatments, for the removal of hemicellulose. Each type of kenaf bast fiber with different refining processes were nano fibrillated by grinding. Resulting, cellulose nanofiber (CNF) sheet was obtained from CNF by vacuum filtration (Scheme 1). The structures and properties of these CNF sheets then were investigated to determine how the CNF components had affected these properties. All of the CNFs from different refining processes were classified as a cellulose Iβ type by X-ray diffraction. However, the mechanical properties (Young’s modulus, tensile strength and toughness) of the CNF sheet with Wise treatment were higher than the properties of the other three CNF sheets. These results strongly suggested that alkaline treatment was unnecessary for the removal of hemicellulose, and that the application of the Wise treatment effectively imparted high mechanical properties to the cellulose microfiber.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Boncel S, Sundaram RM, Windle AH, Koziol KKK (2011) Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano 5:9339–9344. doi:10.1021/nn202685x CrossRef Boncel S, Sundaram RM, Windle AH, Koziol KKK (2011) Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano 5:9339–9344. doi:10.​1021/​nn202685x CrossRef
go back to reference Charles LW, Bledsoe VK, Bledsoe RE (2002) Kenaf harvesting and processing. Trends New Crop New Uses 9:340–347 Charles LW, Bledsoe VK, Bledsoe RE (2002) Kenaf harvesting and processing. Trends New Crop New Uses 9:340–347
go back to reference Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z CrossRef Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.​1007/​s10570-011-9497-z CrossRef
go back to reference Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi:10.1021/bm400178m CrossRef Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi:10.​1021/​bm400178m CrossRef
go back to reference Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. doi:10.1021/bm801065u CrossRef Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. doi:10.​1021/​bm801065u CrossRef
go back to reference Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14:1705–1709. doi:10.1021/bm400377e CrossRef Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14:1705–1709. doi:10.​1021/​bm400377e CrossRef
go back to reference Gierer J (1985) Chemistry of delignification—part 1: general concept and reactions during pulping. Wood Sci Technol 19:289–312. doi:10.1007/BF00350807 Gierer J (1985) Chemistry of delignification—part 1: general concept and reactions during pulping. Wood Sci Technol 19:289–312. doi:10.​1007/​BF00350807
go back to reference Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831CrossRef Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831CrossRef
go back to reference Ifuku S, Nogi M, Abe K et al (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588. doi:10.1021/bm900163d CrossRef Ifuku S, Nogi M, Abe K et al (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588. doi:10.​1021/​bm900163d CrossRef
go back to reference Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n CrossRef Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.​1021/​bm701157n CrossRef
go back to reference Jonoobi M, Harun J, Shakeri A et al (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639 Jonoobi M, Harun J, Shakeri A et al (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639
go back to reference Jonoobi M, Khazaeian A, Tahir PM et al (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095. doi:10.1007/s10570-011-9546-7 CrossRef Jonoobi M, Khazaeian A, Tahir PM et al (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095. doi:10.​1007/​s10570-011-9546-7 CrossRef
go back to reference Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. doi:10.1007/s10570-012-9684-6 CrossRef Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. doi:10.​1007/​s10570-012-9684-6 CrossRef
go back to reference Liu A, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641. doi:10.1021/bm101296z CrossRef Liu A, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641. doi:10.​1021/​bm101296z CrossRef
go back to reference Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852. doi:10.1002/adma.200702559 CrossRef Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852. doi:10.​1002/​adma.​200702559 CrossRef
go back to reference Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi:10.1039/c2sm27344f CrossRef Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi:10.​1039/​c2sm27344f CrossRef
go back to reference Qua EH, Hornsby PR, Sharma HSS et al (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi:10.1002/app.30116 CrossRef Qua EH, Hornsby PR, Sharma HSS et al (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi:10.​1002/​app.​30116 CrossRef
go back to reference Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s CrossRef Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.​1021/​bm060154s CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970 CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.​1021/​bm0703970 CrossRef
go back to reference Saito T, Kuramae R, Wohlert J et al (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.1021/bm301674e CrossRef Saito T, Kuramae R, Wohlert J et al (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.​1021/​bm301674e CrossRef
go back to reference Wise LE, Evelyn KR (1947) Quantitative isolation of hemicelluloses and summative analysis of wood. Inst Pap Chem 19:459–462. doi:10.1021/ac60007a010 Wise LE, Evelyn KR (1947) Quantitative isolation of hemicelluloses and summative analysis of wood. Inst Pap Chem 19:459–462. doi:10.​1021/​ac60007a010
go back to reference Wise LE, Maxine M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43 Wise LE, Maxine M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43
go back to reference Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703. doi:10.1007/s10570-012-9683-7 CrossRef Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703. doi:10.​1007/​s10570-012-9683-7 CrossRef
go back to reference Yang Q, Saito T, Isogai A (2013) Transparent, flexible, and high-strength regenerated cellulose/saponite nanocomposite films with high gas barrier properties. J Appl Polym Sci 130:3168–3174. doi:10.1002/app.39564 CrossRef Yang Q, Saito T, Isogai A (2013) Transparent, flexible, and high-strength regenerated cellulose/saponite nanocomposite films with high gas barrier properties. J Appl Polym Sci 130:3168–3174. doi:10.​1002/​app.​39564 CrossRef
go back to reference Yano H, Hirose A, Collins PJ, Yazaki Y (2001) Effects of the removal of matrix substances as a pretreatment in the production of high strength resin impregnated wood based materials. J Mater Sci Lett 20:1125–1126. doi:10.1023/A:1010992307614 CrossRef Yano H, Hirose A, Collins PJ, Yazaki Y (2001) Effects of the removal of matrix substances as a pretreatment in the production of high strength resin impregnated wood based materials. J Mater Sci Lett 20:1125–1126. doi:10.​1023/​A:​1010992307614 CrossRef
go back to reference Yousefi H, Nishino T, Faezipour M et al (2011) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12:4080–4085. doi:10.1021/bm201147a CrossRef Yousefi H, Nishino T, Faezipour M et al (2011) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12:4080–4085. doi:10.​1021/​bm201147a CrossRef
go back to reference Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:1–3. doi:10.1063/1.2450666 Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:1–3. doi:10.​1063/​1.​2450666
Metadata
Title
Characterization of cellulose nanofiber sheets from different refining processes
Authors
Kohji Nobuta
Hiroshi Teramura
Hiroaki Ito
Chizuru Hongo
Hideo Kawaguchi
Chiaki Ogino
Akihiko Kondo
Takashi Nishino
Publication date
24-10-2015
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0792-y

Other articles of this Issue 1/2016

Cellulose 1/2016 Go to the issue