Skip to main content
Top
Published in: Experimental Mechanics 3/2019

13-02-2019

Characterizing the Interfacial Behavior of 2D Materials: a Review

Author: K.M. Liechti

Published in: Experimental Mechanics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here we review how the interactions of graphene and other 2D materials with their growth and any target substrates have been characterized. Quantifying such interactions is particularly useful for modeling the transfer of the 2D materials to other substrates. It should also help model the assembly of structures made of 2D materials. Distinction is made between direct and indirect methods of extracting the traction-separation relations, which are the continuum representation of the functional form of the interactions between the 2D material and the substrate of interest. Salient features of traction-separation relations include the energy, strength and range of the interaction being considered. Adhesion and separation energies have been the hallmark of linearly elastic fracture mechanics characterizations in the past. The additional information on the strength and range of interactions provided by the measured traction-separation relations allows closer reference to the force fields associated with them and help with the identification of mechanisms. It should also spur theoretical developments to account for some of the interesting features that are being observed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yoon T, Shin WC, Kim TY, Mun JH, Kim TS, Cho BJ (2012) Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett 12(3):1448–1452CrossRef Yoon T, Shin WC, Kim TY, Mun JH, Kim TS, Cho BJ (2012) Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett 12(3):1448–1452CrossRef
2.
go back to reference Na SR, Suk JW, Tao L, Akinwande D, Ruoff RS, Huang R, Liechti KM (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9(2):1325–1335CrossRef Na SR, Suk JW, Tao L, Akinwande D, Ruoff RS, Huang R, Liechti KM (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9(2):1325–1335CrossRef
3.
go back to reference Na SR, Rahimi S, Tao L, Chou H, Ameri SK, Akinwande D, Liechti KM (2016) Clean graphene interfaces by selective dry transfer for large area silicon integration. Nanoscale 8:7523–7533CrossRef Na SR, Rahimi S, Tao L, Chou H, Ameri SK, Akinwande D, Liechti KM (2016) Clean graphene interfaces by selective dry transfer for large area silicon integration. Nanoscale 8:7523–7533CrossRef
4.
go back to reference Na SR, Kim Y, Lee C, Liechti KM, Suk JW (2017) Adhesion and self-healing between monolayer molybdenum disulfide and silicon oxide. Sci Rep 7(1):14740CrossRef Na SR, Kim Y, Lee C, Liechti KM, Suk JW (2017) Adhesion and self-healing between monolayer molybdenum disulfide and silicon oxide. Sci Rep 7(1):14740CrossRef
5.
go back to reference Walker ES, Na SR, Jung D, March SD, Kim JS, Trivedi T, Li W, Tao L, Lee ML, Liechti KM, Akinwande D, Bank SR (2016) Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett 16(11):6931–6938CrossRef Walker ES, Na SR, Jung D, March SD, Kim JS, Trivedi T, Li W, Tao L, Lee ML, Liechti KM, Akinwande D, Bank SR (2016) Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett 16(11):6931–6938CrossRef
6.
go back to reference Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
7.
go back to reference Zong Z, Chen CL, Dokmeci MR, Wan KT (2010) Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J Appl Phys 107(2):026104CrossRef Zong Z, Chen CL, Dokmeci MR, Wan KT (2010) Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J Appl Phys 107(2):026104CrossRef
8.
go back to reference Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462CrossRef Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462CrossRef
9.
go back to reference Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543–546CrossRef Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543–546CrossRef
10.
go back to reference Boddeti NG, Koenig SP, Long R, Xiao J, Bunch JS, Dunn ML (2013) Mechanics of adhered, pressurized graphene blisters. J Appl Mech 80(4):040909CrossRef Boddeti NG, Koenig SP, Long R, Xiao J, Bunch JS, Dunn ML (2013) Mechanics of adhered, pressurized graphene blisters. J Appl Mech 80(4):040909CrossRef
11.
go back to reference Liu X, Boddeti NG, Szpunar MR, Wang L, Rodriguez MA, Long R, Xiao J, Dunn ML, Bunch JS (2013) Observation of pull-in instability in graphene membranes under interfacial forces. Nano Lett 13(5):2309–2313CrossRef Liu X, Boddeti NG, Szpunar MR, Wang L, Rodriguez MA, Long R, Xiao J, Dunn ML, Bunch JS (2013) Observation of pull-in instability in graphene membranes under interfacial forces. Nano Lett 13(5):2309–2313CrossRef
12.
go back to reference Boddeti NG, Liu X, Long R, Xiao J, Bunch JS, Dunn ML (2013) Graphene blisters with switchable shapes controlled by pressure and adhesion. Nano Lett 13(12):6216–6221CrossRef Boddeti NG, Liu X, Long R, Xiao J, Bunch JS, Dunn ML (2013) Graphene blisters with switchable shapes controlled by pressure and adhesion. Nano Lett 13(12):6216–6221CrossRef
13.
go back to reference Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924CrossRef Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924CrossRef
14.
go back to reference Wan K-T, Mai Y-W (1995) Fracture mechanics of a new blister test with stable crack growth. Acta Metall Mater 43(11):4109–4115CrossRef Wan K-T, Mai Y-W (1995) Fracture mechanics of a new blister test with stable crack growth. Acta Metall Mater 43(11):4109–4115CrossRef
15.
go back to reference Allen MG, Senturia SD (1988) Analysis of critical debonding pressures of stressed thin films in the blister test. J Adhes 25:303–315CrossRef Allen MG, Senturia SD (1988) Analysis of critical debonding pressures of stressed thin films in the blister test. J Adhes 25:303–315CrossRef
16.
go back to reference Wang P, Liechti KM, Huang R (2016) Snap transitions of pressurized graphene blisters. J Appl Mech 83(7):071002CrossRef Wang P, Liechti KM, Huang R (2016) Snap transitions of pressurized graphene blisters. J Appl Mech 83(7):071002CrossRef
17.
go back to reference Brennan C, Lu N (2015) Interface adhesion between 2D materials and elastomers measured by buckle delamination. In: APS meeting abstracts Brennan C, Lu N (2015) Interface adhesion between 2D materials and elastomers measured by buckle delamination. In: APS meeting abstracts
18.
go back to reference Cao Z, Wang P, Gao W, Tao L, Suk JW, Ruoff RS, Akinwande D, Huang R, Liechti KM (2014) A blister test for interfacial adhesion of large-scale transferred graphene. Carbon 69:390–400CrossRef Cao Z, Wang P, Gao W, Tao L, Suk JW, Ruoff RS, Akinwande D, Huang R, Liechti KM (2014) A blister test for interfacial adhesion of large-scale transferred graphene. Carbon 69:390–400CrossRef
19.
go back to reference Wang P, Gao W, Cao Z, Liechti KM, Huang R (2013) Numerical analysis of circular graphene bubbles. J Appl Mech 80:040905CrossRef Wang P, Gao W, Cao Z, Liechti KM, Huang R (2013) Numerical analysis of circular graphene bubbles. J Appl Mech 80:040905CrossRef
20.
go back to reference Xin H, Borduin R, Jiang W, Liechti KM, Li W (2017) Adhesion energy of as-grown graphene on copper foil with a blister test. Carbon 123:243–249CrossRef Xin H, Borduin R, Jiang W, Liechti KM, Li W (2017) Adhesion energy of as-grown graphene on copper foil with a blister test. Carbon 123:243–249CrossRef
21.
go back to reference Yang T et al (2019) Rate-dependent traction-separation relations for a silicon/epoxy interface informed by experiments and bond rupture kinetics. J Mech Phys Solids. In preparation Yang T et al (2019) Rate-dependent traction-separation relations for a silicon/epoxy interface informed by experiments and bond rupture kinetics. J Mech Phys Solids. In preparation
22.
go back to reference Rahimi S, Tao L, Chowdhury SF, Park S, Jouvray A, Buttress S, Rupesinghe N, Teo K, Akinwande D (2014) Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8(10):10471–10479CrossRef Rahimi S, Tao L, Chowdhury SF, Park S, Jouvray A, Buttress S, Rupesinghe N, Teo K, Akinwande D (2014) Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8(10):10471–10479CrossRef
23.
go back to reference Wang X, Tao L, Hao Y, Liu Z, Chou H, Kholmanov I, Chen S, Tan C, Jayant N, Yu Q, Akinwande D, Ruoff RS (2014) Direct delamination of graphene for high-performance plastic electronics. Small 10(4):694–698CrossRef Wang X, Tao L, Hao Y, Liu Z, Chou H, Kholmanov I, Chen S, Tan C, Jayant N, Yu Q, Akinwande D, Ruoff RS (2014) Direct delamination of graphene for high-performance plastic electronics. Small 10(4):694–698CrossRef
24.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
25.
go back to reference Na SR, Wang X, Piner RD, Huang R, Willson CG, Liechti KM (2016) Cracking of polycrystalline graphene on copper under tension. ACS Nano 10(10):9616–9625CrossRef Na SR, Wang X, Piner RD, Huang R, Willson CG, Liechti KM (2016) Cracking of polycrystalline graphene on copper under tension. ACS Nano 10(10):9616–9625CrossRef
26.
go back to reference Lupina G, Kitzmann J, Costina I, Lukosius M, Wenger C, Wolff A, Vaziri S, Östling M, Pasternak I, Krajewska A, Strupinski W, Kataria S, Gahoi A, Lemme MC, Ruhl G, Zoth G, Luxenhofer O, Mehr W (2015) Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9:4776–4785CrossRef Lupina G, Kitzmann J, Costina I, Lukosius M, Wenger C, Wolff A, Vaziri S, Östling M, Pasternak I, Krajewska A, Strupinski W, Kataria S, Gahoi A, Lemme MC, Ruhl G, Zoth G, Luxenhofer O, Mehr W (2015) Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9:4776–4785CrossRef
27.
go back to reference Carpick RW, Batteas JD (2004) Scanning probe studies of nanoscale adhesion between solids in the presence of liquids and monolayer films. In: Springer handbook of nanotechnology. Springer, pp 605–629 Carpick RW, Batteas JD (2004) Scanning probe studies of nanoscale adhesion between solids in the presence of liquids and monolayer films. In: Springer handbook of nanotechnology. Springer, pp 605–629
28.
go back to reference Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152CrossRef Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152CrossRef
29.
go back to reference Burnham NA, Dominguez DD, Mowery RL, Colton RJ (1990) Probing the surface forces of monolayer films with an atomic-force microscope. Phys Rev Lett 64(16):1931–1934CrossRef Burnham NA, Dominguez DD, Mowery RL, Colton RJ (1990) Probing the surface forces of monolayer films with an atomic-force microscope. Phys Rev Lett 64(16):1931–1934CrossRef
30.
go back to reference Jiang T, Zhu Y (2015) Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 7(24):10760–10766CrossRef Jiang T, Zhu Y (2015) Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 7(24):10760–10766CrossRef
31.
go back to reference Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Sci 324(1558):301–313CrossRef Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Sci 324(1558):301–313CrossRef
32.
go back to reference Derjaguin RV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326CrossRef Derjaguin RV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326CrossRef
33.
go back to reference Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150(1):243–269CrossRef Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150(1):243–269CrossRef
34.
go back to reference Heim L-O, Blum J, Preuss M, Butt HJ (1999) Adhesion and friction forces between spherical micrometer-sized particles. Phys Rev Lett 83(16):3328–3331CrossRef Heim L-O, Blum J, Preuss M, Butt HJ (1999) Adhesion and friction forces between spherical micrometer-sized particles. Phys Rev Lett 83(16):3328–3331CrossRef
35.
go back to reference Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239–241 Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239–241
36.
go back to reference Jacobs TB et al (2013) The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol Lett 50(1):81–93CrossRef Jacobs TB et al (2013) The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol Lett 50(1):81–93CrossRef
37.
go back to reference Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16CrossRef Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16CrossRef
38.
go back to reference Na SR, Suk JW, Ruoff RS, Huang R, Liechti KM (2014) Ultra long-range interactions between large area graphene and silicon. ACS Nano 8(11):11234–11242CrossRef Na SR, Suk JW, Ruoff RS, Huang R, Liechti KM (2014) Ultra long-range interactions between large area graphene and silicon. ACS Nano 8(11):11234–11242CrossRef
39.
go back to reference Gowrishankar S, Mei H, Liechti KM, Huang R (2012) Comparison of direct and iterative methods for determination of silicon/epoxy interface traction-separation relations. Int J Fract 177:109–128CrossRef Gowrishankar S, Mei H, Liechti KM, Huang R (2012) Comparison of direct and iterative methods for determination of silicon/epoxy interface traction-separation relations. Int J Fract 177:109–128CrossRef
40.
go back to reference Stigh U, Andersson T (2000) An experimental method to determine the complete stress-elongation relation for a structural adhesive layer loaded in peel. In: Williams JG, Pavan A (eds) Fracture of polymers, composites and adhesives, vol 27. ESIS publication, pp 297–306 Stigh U, Andersson T (2000) An experimental method to determine the complete stress-elongation relation for a structural adhesive layer loaded in peel. In: Williams JG, Pavan A (eds) Fracture of polymers, composites and adhesives, vol 27. ESIS publication, pp 297–306
41.
go back to reference Sorensen BF, Jacobsen TK (2003) Determination of cohesive laws by the J integral approach. Eng Fract Mech 70(14):1841–1858CrossRef Sorensen BF, Jacobsen TK (2003) Determination of cohesive laws by the J integral approach. Eng Fract Mech 70(14):1841–1858CrossRef
42.
go back to reference Andersson T, Stigh U (2004) The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41(2):413–434CrossRef Andersson T, Stigh U (2004) The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41(2):413–434CrossRef
43.
go back to reference Sorensen BF, Kirkegaard P (2006) Determination of mixed mode cohesive laws. Eng Fract Mech 73(17):2642–2661CrossRef Sorensen BF, Kirkegaard P (2006) Determination of mixed mode cohesive laws. Eng Fract Mech 73(17):2642–2661CrossRef
44.
go back to reference Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46(1):31–51CrossRef Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46(1):31–51CrossRef
45.
go back to reference Wu C, Huang R, Liechti KM (2019) Simultaneous extraction of tensile and shear interactions at interfaces. J Mech Phys Solids 125:225–254CrossRef Wu C, Huang R, Liechti KM (2019) Simultaneous extraction of tensile and shear interactions at interfaces. J Mech Phys Solids 125:225–254CrossRef
46.
go back to reference Cox BN, Marshall DB (1991) The determination of crack bridging forces. Int J Fract 49(3):159–176 Cox BN, Marshall DB (1991) The determination of crack bridging forces. Int J Fract 49(3):159–176
47.
go back to reference Swadener JG, Liechti KM (1998) Asymmetric shielding mechanisms in the mixed-mode fracture of a glass/epoxy interface. J Appl Mech 65(1):25–29CrossRef Swadener JG, Liechti KM (1998) Asymmetric shielding mechanisms in the mixed-mode fracture of a glass/epoxy interface. J Appl Mech 65(1):25–29CrossRef
48.
go back to reference Mohammed I, Liechti KM (2000) Cohesive zone modeling of crack nucleation at bimaterial corners. J Mech Phys Solids 48(4):735–764MATHCrossRef Mohammed I, Liechti KM (2000) Cohesive zone modeling of crack nucleation at bimaterial corners. J Mech Phys Solids 48(4):735–764MATHCrossRef
49.
go back to reference Li S, Thouless MD (2006) Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer matrix composite. Eng Fract Mech 73:64–78CrossRef Li S, Thouless MD (2006) Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer matrix composite. Eng Fract Mech 73:64–78CrossRef
50.
go back to reference Mello AV, Liechti KM (2006) The effect of self-assembled monolayers on interfacial fracture. J Appl Mech 73:860–870MATHCrossRef Mello AV, Liechti KM (2006) The effect of self-assembled monolayers on interfacial fracture. J Appl Mech 73:860–870MATHCrossRef
51.
go back to reference Sorensen L, Botsis J, Gmür T, Humbert L (2008) Bridging tractions in mode I delamination: measurements and simulations. Compos Sci Technol 68(12):2350–2358CrossRef Sorensen L, Botsis J, Gmür T, Humbert L (2008) Bridging tractions in mode I delamination: measurements and simulations. Compos Sci Technol 68(12):2350–2358CrossRef
52.
go back to reference Gain AL, Carroll J, Paulino GH, Lambros J (2011) A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. Int J Fract 169(2):113–131MATHCrossRef Gain AL, Carroll J, Paulino GH, Lambros J (2011) A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. Int J Fract 169(2):113–131MATHCrossRef
53.
go back to reference Shen B, Paulino G (2001) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51(2):143–163CrossRef Shen B, Paulino G (2001) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51(2):143–163CrossRef
54.
go back to reference Liechti KM, Na SR, Wakamatsu M, Seitz O, Chabal Y (2013) A high vacuum fracture facility for molecular interactions. Exp Mech 53(2):231–241CrossRef Liechti KM, Na SR, Wakamatsu M, Seitz O, Chabal Y (2013) A high vacuum fracture facility for molecular interactions. Exp Mech 53(2):231–241CrossRef
55.
56.
go back to reference Winter RM, Houston JE (1998) Nanomechanical properties of the interphase in polymer composites as measured by interfacial force microscopy. In: Mat. Res. Soc. Spring Meeting. San Francisco, CA Winter RM, Houston JE (1998) Nanomechanical properties of the interphase in polymer composites as measured by interfacial force microscopy. In: Mat. Res. Soc. Spring Meeting. San Francisco, CA
57.
go back to reference Rakestraw M et al (1995) Time dependent crack growth and loading rate effects on interfacial and cohesive fracture of adhesive joints. J Adhes 55(1–2):123–149CrossRef Rakestraw M et al (1995) Time dependent crack growth and loading rate effects on interfacial and cohesive fracture of adhesive joints. J Adhes 55(1–2):123–149CrossRef
58.
go back to reference Swadener JG, Liechti KM, de Lozanne AL (1999) The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J Mech Phys Solids 47:223–258MATHCrossRef Swadener JG, Liechti KM, de Lozanne AL (1999) The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J Mech Phys Solids 47:223–258MATHCrossRef
59.
go back to reference Suk JW, Na SR, Stromberg RJ, Stauffer D, Lee J, Ruoff RS, Liechti KM (2016) Probing the adhesion interactions of graphene on silicon oxide by nanoindentation. Carbon 103:63–72CrossRef Suk JW, Na SR, Stromberg RJ, Stauffer D, Lee J, Ruoff RS, Liechti KM (2016) Probing the adhesion interactions of graphene on silicon oxide by nanoindentation. Carbon 103:63–72CrossRef
60.
go back to reference Kozbial A, Gong X, Liu H, Li L (2015) Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 31(30):8429–8435CrossRef Kozbial A, Gong X, Liu H, Li L (2015) Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 31(30):8429–8435CrossRef
61.
go back to reference Cao Z, Tao L, Akinwande D, Huang R, Liechti KM (2016) Mixed-mode traction-separation relations between graphene and copper by blister tests. Int J Solids Struct 84:147–159CrossRef Cao Z, Tao L, Akinwande D, Huang R, Liechti KM (2016) Mixed-mode traction-separation relations between graphene and copper by blister tests. Int J Solids Struct 84:147–159CrossRef
62.
go back to reference Cao Z et al (2015) Mixed-mode interactions between graphene and substrates by blister tests. J Appl Mech 82(8):081008CrossRef Cao Z et al (2015) Mixed-mode interactions between graphene and substrates by blister tests. J Appl Mech 82(8):081008CrossRef
63.
go back to reference Evans AG, Hutchinson JW (1989) Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces. Acta Metall 37:909–916CrossRef Evans AG, Hutchinson JW (1989) Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces. Acta Metall 37:909–916CrossRef
64.
go back to reference Jiang T, Huang R, Zhu Y (2014) Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv Funct Mater 24:396–402CrossRef Jiang T, Huang R, Zhu Y (2014) Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv Funct Mater 24:396–402CrossRef
65.
go back to reference Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6):1107–1131MATHCrossRef Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6):1107–1131MATHCrossRef
66.
go back to reference Goertz MP, Moore NW (2010) Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy. Prog Surf Sci 85(9–12):347–397CrossRef Goertz MP, Moore NW (2010) Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy. Prog Surf Sci 85(9–12):347–397CrossRef
67.
go back to reference Joyce SA, Houston JE (1991) A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev Sci Instrum 62(3):710–715CrossRef Joyce SA, Houston JE (1991) A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev Sci Instrum 62(3):710–715CrossRef
68.
go back to reference Wang M, Liechti KM, Srinivasan V, White JM, Rossky PJ, Stone MT (2006) A hybrid molecular-continuum analysis of IFM experiments of a self-assembled monolayer. J Appl Mech 73:769–777MATHCrossRef Wang M, Liechti KM, Srinivasan V, White JM, Rossky PJ, Stone MT (2006) A hybrid molecular-continuum analysis of IFM experiments of a self-assembled monolayer. J Appl Mech 73:769–777MATHCrossRef
69.
go back to reference Liechti KM, Schnapp ST, Swadener JG (1998) Contact angle and contact mechanics of a glass/epoxy Interface. Int J Fract 86:361CrossRef Liechti KM, Schnapp ST, Swadener JG (1998) Contact angle and contact mechanics of a glass/epoxy Interface. Int J Fract 86:361CrossRef
70.
go back to reference Grierson DS, Flater EE, Carpick RW (2005) Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J Adhes Sci Technol 19(3–5):291–311CrossRef Grierson DS, Flater EE, Carpick RW (2005) Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J Adhes Sci Technol 19(3–5):291–311CrossRef
71.
go back to reference Fan X et al (2012) Interaction between graphene and the surface of SiO2. J Phys Condens Matter 24(30):305004CrossRef Fan X et al (2012) Interaction between graphene and the surface of SiO2. J Phys Condens Matter 24(30):305004CrossRef
72.
go back to reference Gao W, Xiao P, Henkelman G, Liechti KM, Huang R (2014) Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J Phys D Appl Phys 47:255301CrossRef Gao W, Xiao P, Henkelman G, Liechti KM, Huang R (2014) Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J Phys D Appl Phys 47:255301CrossRef
73.
go back to reference Aitken ZH, Huang R (2010) Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J Appl Phys 107:123531CrossRef Aitken ZH, Huang R (2010) Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J Appl Phys 107:123531CrossRef
74.
go back to reference Gao W, Huang R (2011) Effect of surface roughness on adhesion of graphene membranes. J Phys D Appl Phys 44(45):452001CrossRef Gao W, Huang R (2011) Effect of surface roughness on adhesion of graphene membranes. J Phys D Appl Phys 44(45):452001CrossRef
75.
go back to reference Kumar S, Parks D, Kamrin K (2016) Mechanistic origin of the Ultrastrong adhesion between graphene and a-SiO2: beyond van der Waals. ACS Nano 10(7):6552–6562CrossRef Kumar S, Parks D, Kamrin K (2016) Mechanistic origin of the Ultrastrong adhesion between graphene and a-SiO2: beyond van der Waals. ACS Nano 10(7):6552–6562CrossRef
76.
go back to reference Wang P, Gao W, Huang R (2016) Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate. J Appl Phys 119(7):074305CrossRef Wang P, Gao W, Huang R (2016) Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate. J Appl Phys 119(7):074305CrossRef
77.
go back to reference Gao W, Liechti KM, Huang R (2015) Wet adhesion of graphene. Extreme Mech Lett 3(0):130–140CrossRef Gao W, Liechti KM, Huang R (2015) Wet adhesion of graphene. Extreme Mech Lett 3(0):130–140CrossRef
78.
go back to reference Tsoi S et al (2014) van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano 8(12):12410–12417CrossRef Tsoi S et al (2014) van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano 8(12):12410–12417CrossRef
Metadata
Title
Characterizing the Interfacial Behavior of 2D Materials: a Review
Author
K.M. Liechti
Publication date
13-02-2019
Publisher
Springer US
Published in
Experimental Mechanics / Issue 3/2019
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-019-00475-6

Other articles of this Issue 3/2019

Experimental Mechanics 3/2019 Go to the issue

Premium Partners