Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015

Charge carrier transport through 3D assemblies of zincblende CdSe and ZnSe quantum dots in weak size-quantization regime

Authors: Biljana Pejova, Irina Bineva

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanism of charge carrier transport through 3D assemblies of ZnSe and CdSe quantum dots with zincblende structure in weak size-quantization regime was investigated. The Debye length in the case of ZnSe QDs was found to be 11.5 nm, i.e. almost three times larger than the average diameter of the nanocrystals constituting the films annealed at 250 °C. In CdSe QDs, on the other hand, the Debye’s length of 11.8 nm was almost twice smaller than the average crystal diameter in the films annealed at 300 °C. In the case of ZnSe QD assemblies, it was found that the predominant mechanism governing the charge carrier transport in temperature range from 380 to 650 K is the thermionic emission, with the trap levels taking part in the formation of crystal boundary barrier being located above the Fermi level. Combining temperature-dependent conductivity data with the data from optical absorption studies, the actual position of the trap level was estimated to be at about 0.37 eV (referred to the intrinsic Fermi level at the interface). In contrast to the case of ZnSe, the temperature dependence of conductivity in the case of thin films composed by 3D assemblies of CdSe QDs appeared to be much more complex. In the highest temperature region in which the temperature-dependent conductivity measurements were performed for this system (from 480 to 540 K), it was found that the thermally activated band-to-band electronic transitions govern the conductivity changes, the corresponding thermal band gap energy being 1.85 eV. In the lower-temperature region, down to 300 K, the thermionic emission was found to be predominant charge carrier transport mechanism, with trap levels being positioned above the Fermi level. The two detected trap levels were found to be located at 0.46 and 0.79 eV, corresponding to the measured conductivity activation energies of 0.84 and 0.51 eV.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference P.C. Mathur, A.K. Shukla, R.P. Sharma, P.K. Goyal, J. Electron. Mater. 12, 483 (1983)CrossRef P.C. Mathur, A.K. Shukla, R.P. Sharma, P.K. Goyal, J. Electron. Mater. 12, 483 (1983)CrossRef
3.
4.
go back to reference R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRef R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRef
5.
go back to reference P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef
7.
go back to reference C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)CrossRef C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)CrossRef
8.
9.
go back to reference F. Gindele, R. Westphäling, U. Woggon, L. Spanhel, V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997)CrossRef F. Gindele, R. Westphäling, U. Woggon, L. Spanhel, V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997)CrossRef
10.
go back to reference M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, U. Woggon, Phys. Rev. B 60, 1504 (1999)CrossRef M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, U. Woggon, Phys. Rev. B 60, 1504 (1999)CrossRef
11.
go back to reference M.V. Artemyev, U. Woggon, H. Jaschinski, L.I. Gurinovich, S.V. Gaponenko, J. Phys. Chem. B 104, 11617 (2000)CrossRef M.V. Artemyev, U. Woggon, H. Jaschinski, L.I. Gurinovich, S.V. Gaponenko, J. Phys. Chem. B 104, 11617 (2000)CrossRef
12.
go back to reference M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Status Solidi B 224, 393 (2001)CrossRef M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Status Solidi B 224, 393 (2001)CrossRef
13.
go back to reference B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001)CrossRef B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001)CrossRef
14.
go back to reference D.E. Kim, M.A. Islam, L. Avila, I.P. Herman, J. Phys. Chem. B 107, 6318 (2003)CrossRef D.E. Kim, M.A. Islam, L. Avila, I.P. Herman, J. Phys. Chem. B 107, 6318 (2003)CrossRef
17.
go back to reference C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)CrossRef C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)CrossRef
19.
go back to reference R. Dalven, Introduction to Applied Solid State Physics (Plenum Press, New York, 1990)CrossRef R. Dalven, Introduction to Applied Solid State Physics (Plenum Press, New York, 1990)CrossRef
20.
go back to reference S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 1985) S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 1985)
22.
go back to reference R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRef R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRef
23.
25.
go back to reference J.W. Orton, B.J. Goldsmith, M.J. Powell, J.A. Chapman, Appl. Phys. Lett. 37, 557 (1980)CrossRef J.W. Orton, B.J. Goldsmith, M.J. Powell, J.A. Chapman, Appl. Phys. Lett. 37, 557 (1980)CrossRef
27.
go back to reference J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, J. Appl. Phys. 53, 1602 (1982)CrossRef J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, J. Appl. Phys. 53, 1602 (1982)CrossRef
28.
30.
31.
go back to reference L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, J. Appl. Phys. 46, 4865 (1975)CrossRef L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, J. Appl. Phys. 46, 4865 (1975)CrossRef
32.
go back to reference L.L. Kazmerski, M.S. Ayyagari, F.R. White, G.A. Sanborn, J. Vac. Sci. Technol. 13, 139 (1976)CrossRef L.L. Kazmerski, M.S. Ayyagari, F.R. White, G.A. Sanborn, J. Vac. Sci. Technol. 13, 139 (1976)CrossRef
35.
36.
37.
go back to reference M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRef M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRef
39.
go back to reference M. Manheller, S. Karthäuser, R. Waser, K. Blech, U. Simon, J. Phys. Chem. C 116, 20657 (2012)CrossRef M. Manheller, S. Karthäuser, R. Waser, K. Blech, U. Simon, J. Phys. Chem. C 116, 20657 (2012)CrossRef
40.
go back to reference V.P. Kunets, M.R.S. Dias, T. Rembert, M.E. Ware, YuI Mazur, V. Lopez-Richard, H.A. Mantooth, G.E. Marques, G.J. Salamo, J. Appl. Phys. 113, 183709 (2013)CrossRef V.P. Kunets, M.R.S. Dias, T. Rembert, M.E. Ware, YuI Mazur, V. Lopez-Richard, H.A. Mantooth, G.E. Marques, G.J. Salamo, J. Appl. Phys. 113, 183709 (2013)CrossRef
41.
go back to reference H. Lepage, A. Kaminski-Cachopo, A. Poncet, G. le Carval, J. Phys. Chem. C 116, 10873 (2012)CrossRef H. Lepage, A. Kaminski-Cachopo, A. Poncet, G. le Carval, J. Phys. Chem. C 116, 10873 (2012)CrossRef
43.
go back to reference B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chem. Mater. 20, 2551 (2008)CrossRef B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chem. Mater. 20, 2551 (2008)CrossRef
46.
go back to reference B. Pejova, D. Nesheva, Z. Aneva, A. Petrova, J. Phys. Chem. C 115, 37 (2011)CrossRef B. Pejova, D. Nesheva, Z. Aneva, A. Petrova, J. Phys. Chem. C 115, 37 (2011)CrossRef
49.
go back to reference B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 172, 381 (2003)CrossRef B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 172, 381 (2003)CrossRef
50.
go back to reference B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 174, 276 (2003)CrossRef B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 174, 276 (2003)CrossRef
52.
go back to reference B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 177, 4785 (2004)CrossRef B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 177, 4785 (2004)CrossRef
54.
56.
go back to reference H. Hofmeister, D. Nesheva, Z. Levi, S. Hopfe, S. Matthias, in Proceedings of EUREM 12, Brno, Czechoslovak Society for Electron Microscopy, Brno, 2009, ed. by C. L. Frank, F. Ciampor, p. 365 H. Hofmeister, D. Nesheva, Z. Levi, S. Hopfe, S. Matthias, in Proceedings of EUREM 12, Brno, Czechoslovak Society for Electron Microscopy, Brno, 2009, ed. by C. L. Frank, F. Ciampor, p. 365
57.
go back to reference A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2005) A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2005)
58.
go back to reference Handbook of Chemistry and Physics, 64th edn. (CRC Press, 1983–1984) Handbook of Chemistry and Physics, 64th edn. (CRC Press, 1983–1984)
60.
go back to reference M.T. Weller, Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997) M.T. Weller, Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997)
61.
go back to reference P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006) P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006)
62.
go back to reference C.F. Klingshirin, Semiconductor Optics (Springer, Berlin, 1997) C.F. Klingshirin, Semiconductor Optics (Springer, Berlin, 1997)
63.
go back to reference P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef
64.
go back to reference M.A. Lampert, Injection Currents in Solids (Academic Press, New York, 1965) M.A. Lampert, Injection Currents in Solids (Academic Press, New York, 1965)
65.
go back to reference M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRef M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRef
66.
go back to reference A. B. Novoselova (ed.), Physical and Chemical Properties of Semiconductors—Handbook (Moscow, 1978) A. B. Novoselova (ed.), Physical and Chemical Properties of Semiconductors—Handbook (Moscow, 1978)
67.
68.
Metadata
Title
Charge carrier transport through 3D assemblies of zincblende CdSe and ZnSe quantum dots in weak size-quantization regime
Authors
Biljana Pejova
Irina Bineva
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3006-3

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue