Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Chemically Modified Borophene

Authors : Takahiro Kondo, Iwao Matsuda

Published in: 2D Boron: Boraphene, Borophene, Boronene

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two-dimensional (2D) materials have great potential in several applications such as batteries, catalysts, and electronic devices because of their unique properties, such as large surface area and novel electronic states (Butler et al. ACS Nano. 7(4):2898–926 (2013); Osada and Sasaki. Adv Mater. 24(2):210–28 (2012); Deng et al. Nat Nanotechnol. 11(3):218–30 (2016)). Among these 2D materials, boron-related materials exhibit polymorphisms (Zhang et al. Chem Soc Rev. 46(22):6746–63 (2017); Kondo. Sci Technol Adv Mater. 18(1):780–804 (2017); Jiao et al. Angew Chemie Int Ed. 55(35):10292–5 (2016)), which are unique characteristics differentiating them from 2D materials—that is, there are a wide variety of stable 2D phases owing to the ability to form multicenter bonding configurations of boron (Oganov et al. J Superhard Mater. 31(5):285–291 (2009)). Single monoatomic 2D boron (borophene) layers have been fabricated on solid surfaces with several different stable structures (Mannix et al. Nat Rev Chem. 1:0014 (2017); Xie et al. Adv Mater. 1900392:1–13 (2019)), which is consistent with theoretical predictions regarding polymorphs of borophene (Boustani. Surf Sci. 370(2–3):355–63 (1997); Penev et al. Nano Lett. 12(5):2441–5 (2012); Wu. ACS Nano. 6(8):7443–53 (2012)). Chemically modified borophene should also exhibit polymorphisms owing to these characteristics. Several stable structures are predicted for hydrogenated borophene (borophane) (Jiao et al. Angew Chemie Int Ed. 55(35):10292–5 (2016)). Chemically modified borophene can thus be regarded as a material with potential to exhibit several intriguing functionalities, physical properties, and chemical properties in a wide variety of applications. We note that a wide variety of chemically modified borophenes could also be used as building blocks from the viewpoint of large-scale material production. Indeed, combining 2D materials through layer stacking in a controlled manner has already been focused on and is reported to produce several novel functionalities including superconductivity in the form of new three-dimensional (3D) layered materials (van der Waals heterostructures) (Geim and Grigorieva. Nature. 499(7459):419–25 (2013)). In this paper, both theoretically predicted results and experimentally realized results of chemically modified borophene are reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c CrossRef S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://​doi.​org/​10.​1021/​nn400280c CrossRef
19.
go back to reference H. Nishino, T. Fujita, N.T. Cuong, S. Tominaka, M. Miyauchi, S. Iimura, A. Hirata, N. Umezawa, S. Okada, E. Nishibori, et al., Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 139(39), 13761–13769 (2017). https://doi.org/10.1021/jacs.7b06153 CrossRef H. Nishino, T. Fujita, N.T. Cuong, S. Tominaka, M. Miyauchi, S. Iimura, A. Hirata, N. Umezawa, S. Okada, E. Nishibori, et al., Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 139(39), 13761–13769 (2017). https://​doi.​org/​10.​1021/​jacs.​7b06153 CrossRef
48.
go back to reference B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C.V. Singh, T. Rabczuk, L.F.C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale 10, 3759–3768 (2018). https://doi.org/10.1039/c7nr08725j CrossRef B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C.V. Singh, T. Rabczuk, L.F.C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale 10, 3759–3768 (2018). https://​doi.​org/​10.​1039/​c7nr08725j CrossRef
51.
go back to reference E. Moran, Boron Nitride: Properties, Synthesis and Applications (Chemistry Research Application) (Nova Science Pub Inc, 2017) E. Moran, Boron Nitride: Properties, Synthesis and Applications (Chemistry Research Application) (Nova Science Pub Inc, 2017)
52.
go back to reference Y.(.I.). Chen, Nanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials (CRC Press, 2015) Y.(.I.). Chen, Nanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials (CRC Press, 2015)
54.
go back to reference H. Wang, Y. Zhao, Y. Xie, X. Ma, X. Zhang, Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond. 38, 031003 (2017)CrossRef H. Wang, Y. Zhao, Y. Xie, X. Ma, X. Zhang, Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond. 38, 031003 (2017)CrossRef
55.
go back to reference E.A. Smith, Graphite and boron nitride (“white graphite”): Aspects of structure, powder size, powder shape, and purity. Powder Metall. 14, 110–123 (1971)CrossRef E.A. Smith, Graphite and boron nitride (“white graphite”): Aspects of structure, powder size, powder shape, and purity. Powder Metall. 14, 110–123 (1971)CrossRef
64.
go back to reference S. Fajardo, R.F. García-Galvan, V. Barranco, J.C. Galvan, S.F. Batlle, Graphene-boron nitride composite: A material with advanced functionalities, in InTech, ed. by N. Hu, (Rijeka, Croatia, 2012). https://doi.org/10.5772/50729 S. Fajardo, R.F. García-Galvan, V. Barranco, J.C. Galvan, S.F. Batlle, Graphene-boron nitride composite: A material with advanced functionalities, in InTech, ed. by N. Hu, (Rijeka, Croatia, 2012). https://​doi.​org/​10.​5772/​50729
66.
go back to reference J. Zhu, S. Bhandary, B. Sanyal, H. Ottosson, Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons. J. Phys. Chem. C 115(20), 10264–10271 (2011). https://doi.org/10.1021/jp2016616 CrossRef J. Zhu, S. Bhandary, B. Sanyal, H. Ottosson, Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons. J. Phys. Chem. C 115(20), 10264–10271 (2011). https://​doi.​org/​10.​1021/​jp2016616 CrossRef
68.
go back to reference Y. Gong, G. Shi, Z. Zhang, W. Zhou, J. Jung, W. Gao, L. Ma, Y. Yang, S. Yang, G. You, et al., Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4193 Y. Gong, G. Shi, Z. Zhang, W. Zhou, J. Jung, W. Gao, L. Ma, Y. Yang, S. Yang, G. You, et al., Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5 (2014). https://​doi.​org/​10.​1038/​ncomms4193
79.
go back to reference D. Fan, C. Yang, S. Lu, X. Hu, Two-dimensional boron monosulfides: Semiconducting and metallic polymorphs. arXiv 2018, arXiv:1803.03459 D. Fan, C. Yang, S. Lu, X. Hu, Two-dimensional boron monosulfides: Semiconducting and metallic polymorphs. arXiv 2018, arXiv:1803.03459
Metadata
Title
Chemically Modified Borophene
Authors
Takahiro Kondo
Iwao Matsuda
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-49999-0_5