Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2020

12-08-2020 | ORIGINAL ARTICLE

Closed-loop mode geometric error compensation of five-axis machine tools based on the correction of axes movements

Authors: Guoqiang Fu, Jinghao Shi, Yunpeng Xie, Hongli Gao, Xiaolei Deng

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The evaluation of the results of geometric error compensation is critical, and it can serve as the feedback of the compensation to help improve the precision of the compensation. In this paper, the closed-loop mode geometric error compensation of five-axis machine tools is presented by correcting the movements of all axes. At first, general geometric error modeling of the machine tool is proposed based on POE theory. The initial positions of linear axes and rotary axes relative to the machine tool are considered and the error twist of each axis containing position-independent errors is established. Second, the closed-loop mode is developed by analyzing the open-loop mode of geometric error compensation. The precision inverse feedback module is formed by introducing the designed tool poses. The output of the feedback is the integrated errors of the revised movements of axes relative to the ideal tool poses of nominal movements of axes. Third, the adaptive correction of movements of axes is proposed based on CSO (chicken swarm optimization). The initializing of the swarm, the Jacobian based moving of roosters, and the moving of chicks containing one mutation are developed. The fitness of the swarm is calculated using the integrated errors relative to the compensation goal in the precision inverse feedback. Finally, simulations by comparing with open-loop mode error compensation and real cutting experiments are proposed on one SmartCNC500_DRTD five-axis machine center to verify the effectiveness of the closed-loop mode geometric error compensation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60(0):14–26 Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60(0):14–26
2.
go back to reference Khan AW, Wuyi C (2010) Systematic geometric error modeling for workspace volumetric calibration of a 5-axis turbine blade grinding machine. Chin J Aeronaut 23(5):604–615CrossRef Khan AW, Wuyi C (2010) Systematic geometric error modeling for workspace volumetric calibration of a 5-axis turbine blade grinding machine. Chin J Aeronaut 23(5):604–615CrossRef
3.
go back to reference Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95(9):3413–3435CrossRef Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95(9):3413–3435CrossRef
4.
go back to reference Li J, Mei B, Shuai C, X-j L, Liu D (2019) A volumetric positioning error compensation method for five-axis machine tools. Int J Adv Manuf Technol 103(9):3979–3989CrossRef Li J, Mei B, Shuai C, X-j L, Liu D (2019) A volumetric positioning error compensation method for five-axis machine tools. Int J Adv Manuf Technol 103(9):3979–3989CrossRef
5.
go back to reference Yuen A, Altintas Y (2018) Geometric error compensation with a six degree-of–freedom rotary magnetic actuator. J Manuf Sci Eng 140(11):111016-111016-10 Yuen A, Altintas Y (2018) Geometric error compensation with a six degree-of–freedom rotary magnetic actuator. J Manuf Sci Eng 140(11):111016-111016-10
6.
go back to reference Li Z, Yang J, Fan K, Zhang Y (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Technol 76(5–8):1139–1150CrossRef Li Z, Yang J, Fan K, Zhang Y (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Technol 76(5–8):1139–1150CrossRef
7.
go back to reference Cheng Q, Dong L, Liu Z, Li J, Gu P (2018) A new geometric error budget method of multi-axis machine tool based on improved value analysis. Proc Inst Mech Eng C J Mech Eng Sci 0(0):095440621774926 Cheng Q, Dong L, Liu Z, Li J, Gu P (2018) A new geometric error budget method of multi-axis machine tool based on improved value analysis. Proc Inst Mech Eng C J Mech Eng Sci 0(0):095440621774926
8.
go back to reference Cai L, Zhang Z, Cheng Q, Liu Z, Gu P, Qi Y (2016) An approach to optimize the machining accuracy retainability of multi-axis NC machine tool based on robust design. Precis Eng 43:370–386CrossRef Cai L, Zhang Z, Cheng Q, Liu Z, Gu P, Qi Y (2016) An approach to optimize the machining accuracy retainability of multi-axis NC machine tool based on robust design. Precis Eng 43:370–386CrossRef
9.
go back to reference Fu G, Fu J, Xu Y, Chen Z (2014) Product of exponential model for geometric error integration of multi-axis machine tools. Int J Adv Manuf Technol 71(9–12):1653–1667CrossRef Fu G, Fu J, Xu Y, Chen Z (2014) Product of exponential model for geometric error integration of multi-axis machine tools. Int J Adv Manuf Technol 71(9–12):1653–1667CrossRef
10.
go back to reference Fu G, Fu J, Shen H, Xu Y, Ya J (2015) Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation. Int J Adv Manuf Technol 81(1–4):289–305CrossRef Fu G, Fu J, Shen H, Xu Y, Ya J (2015) Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation. Int J Adv Manuf Technol 81(1–4):289–305CrossRef
11.
go back to reference Yang J, Mayer JRR, Altintas Y (2015) A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. Int J Mach Tools Manuf 95:52–66CrossRef Yang J, Mayer JRR, Altintas Y (2015) A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. Int J Mach Tools Manuf 95:52–66CrossRef
12.
go back to reference Xiang S, Li H, Deng M, Yang J (2018) Geometric error analysis and compensation for multi-axis spiral bevel gears milling machine. Mech Mach Theory 121(Supplement C):59–74CrossRef Xiang S, Li H, Deng M, Yang J (2018) Geometric error analysis and compensation for multi-axis spiral bevel gears milling machine. Mech Mach Theory 121(Supplement C):59–74CrossRef
13.
go back to reference Liu Y, Wan M, Xing W-J, Xiao Q-B, Zhang W-H (2018) Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. Int J Mech Sci 145:299–317CrossRef Liu Y, Wan M, Xing W-J, Xiao Q-B, Zhang W-H (2018) Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. Int J Mech Sci 145:299–317CrossRef
14.
go back to reference Liu Y, Wan M, Xiao Q-B, Zhang W-H (2019) Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA). Int J Mech Sci 152:211–227CrossRef Liu Y, Wan M, Xiao Q-B, Zhang W-H (2019) Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA). Int J Mech Sci 152:211–227CrossRef
15.
go back to reference Zhong X, Liu H, Mao X, Li B, He S (2019) Influence and error transfer in assembly process of geometric errors of a translational axis on volumetric error in machine tools. Measurement 140:450–461CrossRef Zhong X, Liu H, Mao X, Li B, He S (2019) Influence and error transfer in assembly process of geometric errors of a translational axis on volumetric error in machine tools. Measurement 140:450–461CrossRef
16.
go back to reference Cheng Q, Sun BW, Liu ZF, Li JY, Dong XM, Gu PH (2017) Key geometric error extraction of machine tool based on extended Fourier amplitude sensitivity test method. Int J Adv Manuf Technol 90(9–12):3369–3385CrossRef Cheng Q, Sun BW, Liu ZF, Li JY, Dong XM, Gu PH (2017) Key geometric error extraction of machine tool based on extended Fourier amplitude sensitivity test method. Int J Adv Manuf Technol 90(9–12):3369–3385CrossRef
17.
go back to reference Chen J, Lin S, He B (2014) Geometric error compensation for multi-axis CNC machines based on differential transformation. Int J Adv Manuf Technol 71(1–4):635–642CrossRef Chen J, Lin S, He B (2014) Geometric error compensation for multi-axis CNC machines based on differential transformation. Int J Adv Manuf Technol 71(1–4):635–642CrossRef
18.
go back to reference J-x C, Lin S-w, X-l Z (2016) A comprehensive error analysis method for the geometric error of multi-axis machine tool. Int J Mach Tools Manuf 106:56–66CrossRef J-x C, Lin S-w, X-l Z (2016) A comprehensive error analysis method for the geometric error of multi-axis machine tool. Int J Mach Tools Manuf 106:56–66CrossRef
19.
go back to reference Tang H, Duan J-A, Lan S, Shui H (2015) A new geometric error modeling approach for multi-axis system based on stream of variation theory. Int J Mach Tools Manuf 92(0):41–51 Tang H, Duan J-A, Lan S, Shui H (2015) A new geometric error modeling approach for multi-axis system based on stream of variation theory. Int J Mach Tools Manuf 92(0):41–51
20.
go back to reference Fu GQ, Fu JZ, Xu YT, Chen ZC, Lai JT (2015) Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. Int J Mach Tool Manu 89(0):170–181 Fu GQ, Fu JZ, Xu YT, Chen ZC, Lai JT (2015) Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. Int J Mach Tool Manu 89(0):170–181
21.
go back to reference Fu G, Gong H, Fu J, Gao H, Deng X (2019) Geometric error contribution modeling and sensitivity evaluating for each axis of five-axis machine tools based on POE theory and transforming differential changes between coordinate frames. Int J Mach Tools Manuf 147:103455CrossRef Fu G, Gong H, Fu J, Gao H, Deng X (2019) Geometric error contribution modeling and sensitivity evaluating for each axis of five-axis machine tools based on POE theory and transforming differential changes between coordinate frames. Int J Mach Tools Manuf 147:103455CrossRef
22.
go back to reference Yang J, Ding H (2016) A new position independent geometric errors identification model of five-axis serial machine tools based on differential motion matrices. Int J Mach Tools Manuf 104:68–77CrossRef Yang J, Ding H (2016) A new position independent geometric errors identification model of five-axis serial machine tools based on differential motion matrices. Int J Mach Tools Manuf 104:68–77CrossRef
23.
go back to reference Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng J Int Soc Precis Eng Nanotechnol 33(2):194–201 Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng J Int Soc Precis Eng Nanotechnol 33(2):194–201
24.
go back to reference Ding S, Huang X, Yu C, Wang W (2016) Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools. Int J Mach Tools Manuf 111:55–62CrossRef Ding S, Huang X, Yu C, Wang W (2016) Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools. Int J Mach Tools Manuf 111:55–62CrossRef
25.
go back to reference Zhou X, Jiang Z, Song B, Tang X, Zheng S (2017) A compensation method for the geometric errors of five-axis machine tools based on the topology relation between axes. Int J Adv Manuf Technol 88(5–8):1993–2007CrossRef Zhou X, Jiang Z, Song B, Tang X, Zheng S (2017) A compensation method for the geometric errors of five-axis machine tools based on the topology relation between axes. Int J Adv Manuf Technol 88(5–8):1993–2007CrossRef
26.
go back to reference Gao W, Weng L, Zhang J, Tian W, Zhang G, Zheng Y, Li J (2020) An improved machine tool volumetric error compensation method based on linear and squareness error correction method. Int J Adv Manuf Technol 106(11):4731–4744CrossRef Gao W, Weng L, Zhang J, Tian W, Zhang G, Zheng Y, Li J (2020) An improved machine tool volumetric error compensation method based on linear and squareness error correction method. Int J Adv Manuf Technol 106(11):4731–4744CrossRef
27.
go back to reference Xiang S, Altintas Y (2016) Modeling and compensation of volumetric errors for five-axis machine tools. Int J Mach Tools Manuf 101:65–78CrossRef Xiang S, Altintas Y (2016) Modeling and compensation of volumetric errors for five-axis machine tools. Int J Mach Tools Manuf 101:65–78CrossRef
28.
go back to reference Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52(1):24–29CrossRef Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52(1):24–29CrossRef
29.
go back to reference Peng FY, Ma JY, Wang W, Duan XY, Sun PP, Yan R (2013) Total differential methods based universal post processing algorithm considering geometric error for multi-axis NC machine tool. Int J Mach Tools Manuf 70(0):53–62 Peng FY, Ma JY, Wang W, Duan XY, Sun PP, Yan R (2013) Total differential methods based universal post processing algorithm considering geometric error for multi-axis NC machine tool. Int J Mach Tools Manuf 70(0):53–62
30.
go back to reference Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98CrossRef Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98CrossRef
31.
go back to reference Lei WT, Hsu YY (2003) Accuracy enhancement of five-axis CNC machines through real-time error compensation. Int J Mach Tools Manuf 43(9):871–877CrossRef Lei WT, Hsu YY (2003) Accuracy enhancement of five-axis CNC machines through real-time error compensation. Int J Mach Tools Manuf 43(9):871–877CrossRef
32.
go back to reference Givi M, Mayer JRR (2015) Volumetric error formulation and mismatch test for five-axis CNC machine compensation using differential kinematics and ephemeral G-code. Int J Adv Manuf Technol 77(9–12):1645–1653CrossRef Givi M, Mayer JRR (2015) Volumetric error formulation and mismatch test for five-axis CNC machine compensation using differential kinematics and ephemeral G-code. Int J Adv Manuf Technol 77(9–12):1645–1653CrossRef
33.
go back to reference Fu G, Fu J, Shen H, Sha J, Xu Y (2016) Numerical solution of simultaneous equations based geometric error compensation for CNC machine tools with workpiece model reconstruction. Int J Adv Manuf Technol 86(5):2265–2278CrossRef Fu G, Fu J, Shen H, Sha J, Xu Y (2016) Numerical solution of simultaneous equations based geometric error compensation for CNC machine tools with workpiece model reconstruction. Int J Adv Manuf Technol 86(5):2265–2278CrossRef
34.
go back to reference Lei WT, Sung MP (2008) NURBS-based fast geometric error compensation for CNC machine tools. Int J Mach Tools Manuf 48(3–4):307–319CrossRef Lei WT, Sung MP (2008) NURBS-based fast geometric error compensation for CNC machine tools. Int J Mach Tools Manuf 48(3–4):307–319CrossRef
35.
go back to reference Fu G, Gong H, Gao H, Gu T, Cao Z (2019) Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network. Int J Adv Manuf Technol Fu G, Gong H, Gao H, Gu T, Cao Z (2019) Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network. Int J Adv Manuf Technol
36.
go back to reference Fu G, Fu J, Shen H, Yao X, Chen Z (2015) NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model. Int J Adv Manuf Technol 80(9–12):1879–1894CrossRef Fu G, Fu J, Shen H, Yao X, Chen Z (2015) NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model. Int J Adv Manuf Technol 80(9–12):1879–1894CrossRef
37.
go back to reference Fu G, Zhang L, Fu J, Gao H, Ya J (2018) F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools. Int J Adv Manuf Technol 94(9–12):4493–4505CrossRef Fu G, Zhang L, Fu J, Gao H, Ya J (2018) F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools. Int J Adv Manuf Technol 94(9–12):4493–4505CrossRef
38.
go back to reference Lin ZW, Fu JZ, Sun YF, Gao Q, Xu GH, Wang ZT (2017) Non-retraction toolpath generation for irregular compound freeform surfaces with the LKH TSP solver. Int J Adv Manuf Technol 92(5–8):2325–2339CrossRef Lin ZW, Fu JZ, Sun YF, Gao Q, Xu GH, Wang ZT (2017) Non-retraction toolpath generation for irregular compound freeform surfaces with the LKH TSP solver. Int J Adv Manuf Technol 92(5–8):2325–2339CrossRef
Metadata
Title
Closed-loop mode geometric error compensation of five-axis machine tools based on the correction of axes movements
Authors
Guoqiang Fu
Jinghao Shi
Yunpeng Xie
Hongli Gao
Xiaolei Deng
Publication date
12-08-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05793-x

Other articles of this Issue 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Go to the issue

Premium Partners