Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 16/2022

06-05-2022

CoFe2O4 surface modification with conducting polypyrrole: employed as a highly active electrocatalyst for oxygen evolution reaction

Authors: Norah Alwadai, Sumaira Manzoor, Syeda Rabia Ejaz, Rabia Yasmin Khosa, Salma Aman, M. S. Al-Buriahi, Sultan Alomairy, Z. A. Alrowaili, H. H. Somaily, Majid Hayat

Published in: Journal of Materials Science: Materials in Electronics | Issue 16/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrochemical water splitting could be a potentially viable technique for obtaining the energy from renewable sources. The considerable overpotential demanded for sluggish oxygen evolution reaction (OER), however, prevents broad adoption of this approach. Herein, CoFe2O4/PPY hybrid is synthesized with a polypyrrole layered on the top of the CoFe2O4 via facile hydrothermal treatment. CoFe2O4/PPY is a highly efficient electrocatalyst, because it outperforms than pure CoFe2O4, PPY in terms of OER. CoFe2O4/PPY OER activities are comparable to those of commercial electrocatalysts. It's worth noting that the CoFe2O4/PPY hybrid is significantly more stable than the individuals, due to surface coated with PPY, responsible for good conduction of fast-moving electrons. The CoFe2O4/PPY coupling increases the OER by promoting electron exchange between the PPY layer and the CoFe2O4 reducing the over potential of (274 mV) and also lower the Tafel slope (47 mV/dec) with lower charge transfer resistance (3.15 Ω). According to the findings, on the top of CoFe2O4, a layer of PPY is applied for the surface modification using a conducting polymer can improve spinel oxides activity for future applications such as photoelectrocatalytic study, for stabilizing the material activity, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Xu et al., Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 12(34), 38106–38112 (2020)CrossRef J. Xu et al., Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 12(34), 38106–38112 (2020)CrossRef
3.
go back to reference J. Hou et al., Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Func. Mater. 29(20), 1808367 (2019)CrossRef J. Hou et al., Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Func. Mater. 29(20), 1808367 (2019)CrossRef
4.
go back to reference M.Y. ur Rehman et al., Facile synthesis of novel carbon dots@ metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. J. Alloys Compds. 856, 158038 (2021)CrossRef M.Y. ur Rehman et al., Facile synthesis of novel carbon dots@ metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. J. Alloys Compds. 856, 158038 (2021)CrossRef
5.
go back to reference M. Sadaqat et al., Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim. Acta 371, 137830 (2021)CrossRef M. Sadaqat et al., Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim. Acta 371, 137830 (2021)CrossRef
6.
go back to reference Y. Huang et al., Mesoporous cobalt ferrite phosphides/reduced graphene oxide as highly effective electrocatalyst for overall water splitting. J. Colloid Interface Sci. 605, 667–673 (2022)CrossRef Y. Huang et al., Mesoporous cobalt ferrite phosphides/reduced graphene oxide as highly effective electrocatalyst for overall water splitting. J. Colloid Interface Sci. 605, 667–673 (2022)CrossRef
7.
go back to reference L. Fu et al., Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 418, 129422 (2021)CrossRef L. Fu et al., Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 418, 129422 (2021)CrossRef
8.
go back to reference I. Hamdani, A. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renew. Sustain. Energy Rev. 138, 110503 (2021)CrossRef I. Hamdani, A. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renew. Sustain. Energy Rev. 138, 110503 (2021)CrossRef
9.
go back to reference Z. Cao et al., Visualization of bubble dynamic behaviors during photoelectrochemical water splitting with TiO2 photoelectrode. Electrochim. Acta 347, 136230 (2020)CrossRef Z. Cao et al., Visualization of bubble dynamic behaviors during photoelectrochemical water splitting with TiO2 photoelectrode. Electrochim. Acta 347, 136230 (2020)CrossRef
10.
go back to reference N. Nazar et al., Metal-organic framework derived CeO2/C nanorod arrays directly grown on nickel foam as a highly efficient electrocatalyst for OER. Fuel 307, 121823 (2022)CrossRef N. Nazar et al., Metal-organic framework derived CeO2/C nanorod arrays directly grown on nickel foam as a highly efficient electrocatalyst for OER. Fuel 307, 121823 (2022)CrossRef
11.
go back to reference J. Wang et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016)CrossRef J. Wang et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016)CrossRef
12.
go back to reference P. Millet et al., PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrogen Energy 35(10), 5043–5052 (2010)CrossRef P. Millet et al., PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrogen Energy 35(10), 5043–5052 (2010)CrossRef
13.
go back to reference G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019 (2016)CrossRef G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019 (2016)CrossRef
14.
go back to reference E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9(15), 1774–1785 (2007)CrossRef E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9(15), 1774–1785 (2007)CrossRef
15.
go back to reference D.M. Bierschenk, J.R. Wilson, S.A. Barnett, High efficiency electrical energy storage using a methane–oxygen solid oxide cell. Energy Environ. Sci. 4(3), 944–951 (2011)CrossRef D.M. Bierschenk, J.R. Wilson, S.A. Barnett, High efficiency electrical energy storage using a methane–oxygen solid oxide cell. Energy Environ. Sci. 4(3), 944–951 (2011)CrossRef
16.
go back to reference F.A. Garcés-Pineda et al., Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4(6), 519–525 (2019)CrossRef F.A. Garcés-Pineda et al., Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4(6), 519–525 (2019)CrossRef
17.
go back to reference S. Li et al., A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 60(7), 3773–3780 (2021)CrossRef S. Li et al., A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 60(7), 3773–3780 (2021)CrossRef
18.
go back to reference D. Zhou et al., Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 50, 8790 (2021)CrossRef D. Zhou et al., Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 50, 8790 (2021)CrossRef
19.
go back to reference W.-H. Huang et al., Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS 2 with hetero-interfaces. Chem. Commun. 57(39), 4847–4850 (2021)CrossRef W.-H. Huang et al., Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS 2 with hetero-interfaces. Chem. Commun. 57(39), 4847–4850 (2021)CrossRef
20.
go back to reference F. Song et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)CrossRef F. Song et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)CrossRef
21.
go back to reference W.-H. Huang et al., CoMo-bimetallic N-doped porous carbon materials embedded with highly dispersed Pt nanoparticles as pH-universal hydrogen evolution reaction electrocatalysts. Nanoscale 12(38), 19804–19813 (2020)CrossRef W.-H. Huang et al., CoMo-bimetallic N-doped porous carbon materials embedded with highly dispersed Pt nanoparticles as pH-universal hydrogen evolution reaction electrocatalysts. Nanoscale 12(38), 19804–19813 (2020)CrossRef
22.
go back to reference C. Wei et al., Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31(31), 1806296 (2019)CrossRef C. Wei et al., Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31(31), 1806296 (2019)CrossRef
23.
go back to reference M. Sadaqat et al., Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J. Mater. Chem. A 7(46), 26410–26420 (2019)CrossRef M. Sadaqat et al., Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J. Mater. Chem. A 7(46), 26410–26420 (2019)CrossRef
24.
go back to reference H. Liu et al., PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chem. Eng. J. 428, 131183 (2022)CrossRef H. Liu et al., PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chem. Eng. J. 428, 131183 (2022)CrossRef
25.
go back to reference H. Yin et al., Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Res. 11(8), 3959–3971 (2018)CrossRef H. Yin et al., Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Res. 11(8), 3959–3971 (2018)CrossRef
26.
go back to reference A.G. Abid et al., Scalable synthesis of Sm2O3/Fe2O3 hierarchical oxygen vacancy-based gyroid-inspired morphology: with enhanced electrocatalytic activity for oxygen evolution performance. Energy Fuels 35(21), 17820–17832 (2021)CrossRef A.G. Abid et al., Scalable synthesis of Sm2O3/Fe2O3 hierarchical oxygen vacancy-based gyroid-inspired morphology: with enhanced electrocatalytic activity for oxygen evolution performance. Energy Fuels 35(21), 17820–17832 (2021)CrossRef
27.
go back to reference T. Tian et al., Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett. 3(9), 2150–2158 (2018)CrossRef T. Tian et al., Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett. 3(9), 2150–2158 (2018)CrossRef
28.
go back to reference Q. Zhou et al., Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 8(6), 5382–5390 (2018)CrossRef Q. Zhou et al., Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 8(6), 5382–5390 (2018)CrossRef
29.
go back to reference C.L.I. Flores, M.D.L. Balela, Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium. J. Solid State Electrochem. 24(4), 891–904 (2020)CrossRef C.L.I. Flores, M.D.L. Balela, Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium. J. Solid State Electrochem. 24(4), 891–904 (2020)CrossRef
30.
go back to reference J. Qi et al., Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2(10), 1500199 (2015)CrossRef J. Qi et al., Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2(10), 1500199 (2015)CrossRef
31.
go back to reference T. Saravanakumar et al., Hexacyanoferrate-complex-derived NiFe2O4/CoFe2O4 heterostructure–MWCNTs for an efficient oxygen evolution reaction. Energy Fuels 35(6), 5372–5382 (2021)CrossRef T. Saravanakumar et al., Hexacyanoferrate-complex-derived NiFe2O4/CoFe2O4 heterostructure–MWCNTs for an efficient oxygen evolution reaction. Energy Fuels 35(6), 5372–5382 (2021)CrossRef
32.
go back to reference S. Ye et al., Deeply self-reconstructing CoFe(H3O)(PO4)2 to low-crystalline Fe0.5Co0.5OOH with Fe3+–O–Fe3+ motifs for oxygen evolution reaction. Appl. Catal. B 304, 120986 (2021)CrossRef S. Ye et al., Deeply self-reconstructing CoFe(H3O)(PO4)2 to low-crystalline Fe0.5Co0.5OOH with Fe3+–O–Fe3+ motifs for oxygen evolution reaction. Appl. Catal. B 304, 120986 (2021)CrossRef
33.
go back to reference J. Liu et al., Amorphous FeOOH coating stabilizes WO2-NaxWO3 for accelerating oxygen evolution reaction. Chem. Eng. J. 426, 131253 (2021)CrossRef J. Liu et al., Amorphous FeOOH coating stabilizes WO2-NaxWO3 for accelerating oxygen evolution reaction. Chem. Eng. J. 426, 131253 (2021)CrossRef
34.
go back to reference L. Lv et al., 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019)CrossRef L. Lv et al., 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019)CrossRef
35.
go back to reference R.D. Smith et al., Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013)CrossRef R.D. Smith et al., Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013)CrossRef
36.
go back to reference L. Gong et al., Enhanced catalysis of the electrochemical oxygen evolution reaction by iron (III) ions adsorbed on amorphous cobalt oxide. ACS Catal. 8(2), 807–814 (2018)CrossRef L. Gong et al., Enhanced catalysis of the electrochemical oxygen evolution reaction by iron (III) ions adsorbed on amorphous cobalt oxide. ACS Catal. 8(2), 807–814 (2018)CrossRef
37.
go back to reference N.A. Frey et al., Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38(9), 2532–2542 (2009)CrossRef N.A. Frey et al., Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38(9), 2532–2542 (2009)CrossRef
38.
go back to reference N. Moumen, M. Pileni, Control of the size of cobalt ferrite magnetic fluid. J. Phys. Chem. 100(5), 1867–1873 (1996)CrossRef N. Moumen, M. Pileni, Control of the size of cobalt ferrite magnetic fluid. J. Phys. Chem. 100(5), 1867–1873 (1996)CrossRef
39.
go back to reference H.M. Joshi et al., Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009)CrossRef H.M. Joshi et al., Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009)CrossRef
40.
go back to reference Y. Oh et al., Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie 133, 7–19 (2017)CrossRef Y. Oh et al., Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie 133, 7–19 (2017)CrossRef
41.
go back to reference Y. Kumar, A. Sharma, P.M. Shirage, Shape-controlled CoFe2O4 nanoparticles as an excellent material for humidity sensing. RSC Adv. 7(88), 55778–55785 (2017)CrossRef Y. Kumar, A. Sharma, P.M. Shirage, Shape-controlled CoFe2O4 nanoparticles as an excellent material for humidity sensing. RSC Adv. 7(88), 55778–55785 (2017)CrossRef
42.
go back to reference M.P. Browne et al., Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustain. Energy Fuels 1(1), 207–216 (2017)CrossRef M.P. Browne et al., Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustain. Energy Fuels 1(1), 207–216 (2017)CrossRef
43.
go back to reference K. Haas-Santo, M. Fichtner, K. Schubert, Preparation of microstructure compatible porous supports by sol–gel synthesis for catalyst coatings. Appl. Catal. A 220(1–2), 79–92 (2001)CrossRef K. Haas-Santo, M. Fichtner, K. Schubert, Preparation of microstructure compatible porous supports by sol–gel synthesis for catalyst coatings. Appl. Catal. A 220(1–2), 79–92 (2001)CrossRef
44.
go back to reference J. Huang et al., Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett. 3(7), 1698–1707 (2018)CrossRef J. Huang et al., Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett. 3(7), 1698–1707 (2018)CrossRef
45.
go back to reference Z. Wang et al., A facile co-precipitation synthesis of robust FeCo phosphate electrocatalysts for efficient oxygen evolution. Electrochim. Acta 264, 244–250 (2018)CrossRef Z. Wang et al., A facile co-precipitation synthesis of robust FeCo phosphate electrocatalysts for efficient oxygen evolution. Electrochim. Acta 264, 244–250 (2018)CrossRef
46.
go back to reference J.G.D. Haenen, W. Visscher, E. Barendrecht, Oxygen evolution on NiCo2O4 electrodes. J. Appl. Electrochem. 15(1), 29–38 (1985)CrossRef J.G.D. Haenen, W. Visscher, E. Barendrecht, Oxygen evolution on NiCo2O4 electrodes. J. Appl. Electrochem. 15(1), 29–38 (1985)CrossRef
47.
go back to reference H. Yuan et al., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 404, 126474 (2021)CrossRef H. Yuan et al., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 404, 126474 (2021)CrossRef
48.
go back to reference V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50(12), 2499–2506 (2005)CrossRef V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50(12), 2499–2506 (2005)CrossRef
49.
go back to reference M. Alsultan et al., Conducting-polymer nanocomposites as synergistic supports that accelerate electro-catalysis: PEDOT/Nano Co3O4/rGO as a photo catalyst of oxygen production from water. J. Compos. Sci. 5(9), 245 (2021)CrossRef M. Alsultan et al., Conducting-polymer nanocomposites as synergistic supports that accelerate electro-catalysis: PEDOT/Nano Co3O4/rGO as a photo catalyst of oxygen production from water. J. Compos. Sci. 5(9), 245 (2021)CrossRef
50.
go back to reference P. Zhang et al., Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Mater. Today Energy 17, 100451 (2020)CrossRef P. Zhang et al., Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Mater. Today Energy 17, 100451 (2020)CrossRef
51.
go back to reference Y. Liu et al., Preparation of PPy/TiO2 core-shell nanorods film and its photocathodic protection for 304 stainless steel under visible light. Mater. Res. Bull. 124, 110751 (2020)CrossRef Y. Liu et al., Preparation of PPy/TiO2 core-shell nanorods film and its photocathodic protection for 304 stainless steel under visible light. Mater. Res. Bull. 124, 110751 (2020)CrossRef
52.
go back to reference H.N. Cong, K. El Abbassi, P. Chartier, Electrically conductive polymer/metal oxide composite electrodes for oxygen reduction. Electrochem. Solid State Lett. 3(4), 192 (2000)CrossRef H.N. Cong, K. El Abbassi, P. Chartier, Electrically conductive polymer/metal oxide composite electrodes for oxygen reduction. Electrochem. Solid State Lett. 3(4), 192 (2000)CrossRef
53.
go back to reference B. Chaluvaraju, S.K. Ganiger, M. Murugendrappa, Synthesis, characterization and DC conductivity studies of polypyrrole/tantalum pentoxide composites. Int. J. Latest Technol. Eng. 3(5), 33–36 (2014) B. Chaluvaraju, S.K. Ganiger, M. Murugendrappa, Synthesis, characterization and DC conductivity studies of polypyrrole/tantalum pentoxide composites. Int. J. Latest Technol. Eng. 3(5), 33–36 (2014)
54.
go back to reference M. Safari, J. Mazloom, Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. J. Solid State Electrochem. 25, 2189–2200 (2021)CrossRef M. Safari, J. Mazloom, Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. J. Solid State Electrochem. 25, 2189–2200 (2021)CrossRef
55.
go back to reference S. Manzoor et al., Development of excellent and novel flowery zirconia/cadmium sulfide nanohybrid electrode: For high performance electrochemical supercapacitor application. J. Energy Storage 40, 102718 (2021)CrossRef S. Manzoor et al., Development of excellent and novel flowery zirconia/cadmium sulfide nanohybrid electrode: For high performance electrochemical supercapacitor application. J. Energy Storage 40, 102718 (2021)CrossRef
Metadata
Title
CoFe2O4 surface modification with conducting polypyrrole: employed as a highly active electrocatalyst for oxygen evolution reaction
Authors
Norah Alwadai
Sumaira Manzoor
Syeda Rabia Ejaz
Rabia Yasmin Khosa
Salma Aman
M. S. Al-Buriahi
Sultan Alomairy
Z. A. Alrowaili
H. H. Somaily
Majid Hayat
Publication date
06-05-2022
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 16/2022
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-022-08265-y

Other articles of this Issue 16/2022

Journal of Materials Science: Materials in Electronics 16/2022 Go to the issue