Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 6/2019

23-02-2019 | Original Article

Combination of “quadratic adaptive algorithm” and “hybrid operator splitting” or uniformization algorithms for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model

Authors: Xing-Ji Chen, Ching-Hsing Luo, Min-Hung Chen, Xiang Zhou

Published in: Medical & Biological Engineering & Computing | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Markovian model has generally been used for cardiac electrophysiological simulations. However, the Markovian model is so stiff that speeding up the computation of the algorithms with variable time-steps always results in simulation instability. In particular, the unstable simulations always occur at a low voltage rate or current change, while transition rates in the Markovian model are changing markedly. The uniformization (UNI) method allows for a Markovian model simulation with high stability but also a high computation cost. To save computation costs with variable time-steps, we propose a speed increasing idea that is a compromise to the trade-off between stability and acceleration by combining Chen-Chen-Luo’s “quadratic adaptive algorithm” (CCL) method with “hybrid operator splitting” (HOS) into the solver (CCL + HOS solver). The computation cost of this CCL + HOS solver is approximately 24 times lower than the CCL + UNI solver, and the CCL + HOS solver can function 295 times faster in comparison to the HOS solver with a fixed time-step (DT). The suggested optimal solver should be CCL + HOS solver with a maximum time-step at 0.1 ms due to its high speed with low error. Additionally, the CCL method has much better performance and stability than the hybrid method in this single-cell model simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566, 569CrossRef Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566, 569CrossRef
2.
go back to reference Bankston JR, Sampson KJ, Kateriya S, Glaaser IW, Malito DL, Chung WK, Kass RS (2007) A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels 1:273–280CrossRefPubMed Bankston JR, Sampson KJ, Kateriya S, Glaaser IW, Malito DL, Chung WK, Kass RS (2007) A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels 1:273–280CrossRefPubMed
3.
go back to reference Greer-Short A, George SA, Poelzing S, Weinberg SH (2017) Revealing the concealed nature of long-QT type 3 syndrome. Circ Arrhythm Electrophysiol 10:e004400CrossRefPubMedPubMedCentral Greer-Short A, George SA, Poelzing S, Weinberg SH (2017) Revealing the concealed nature of long-QT type 3 syndrome. Circ Arrhythm Electrophysiol 10:e004400CrossRefPubMedPubMedCentral
4.
go back to reference Campana C, Gando I, Tan RB, Cecchin F, Coetzee WA, Sobie EA (2018) Population-based mathematical modeling to deduce disease-causing cardiac Na + channel gating defects. Biophys J 114:634a–635aCrossRef Campana C, Gando I, Tan RB, Cecchin F, Coetzee WA, Sobie EA (2018) Population-based mathematical modeling to deduce disease-causing cardiac Na + channel gating defects. Biophys J 114:634a–635aCrossRef
6.
go back to reference Spiteri RJ, Dean RC (2010) Stiffness analysis of cardiac electrophysiological models. Ann Biomed Eng 38:3592, 3604CrossRef Spiteri RJ, Dean RC (2010) Stiffness analysis of cardiac electrophysiological models. Ann Biomed Eng 38:3592, 3604CrossRef
7.
go back to reference Reibman A, Trivedi K (1988) Numerical transient analysis of Markov models. Comput Oper Res 15:19–36CrossRef Reibman A, Trivedi K (1988) Numerical transient analysis of Markov models. Comput Oper Res 15:19–36CrossRef
8.
go back to reference Gomes JM, Alvarenga A, Campos RS, Rocha BM, da Silva APC, dos Santos RW (2015) Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation. IEEE Trans Biomed Eng 62:600–608CrossRefPubMed Gomes JM, Alvarenga A, Campos RS, Rocha BM, da Silva APC, dos Santos RW (2015) Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation. IEEE Trans Biomed Eng 62:600–608CrossRefPubMed
9.
go back to reference Starý T, Biktashev VN (2015) Exponential integrators for a Markov chain model of the fast sodium channel of cardiomyocytes. IEEE Trans Biomed Eng 62:1070–1076CrossRefPubMed Starý T, Biktashev VN (2015) Exponential integrators for a Markov chain model of the fast sodium channel of cardiomyocytes. IEEE Trans Biomed Eng 62:1070–1076CrossRefPubMed
10.
go back to reference Victorri B, Vinet A, Roberge FA, Drouhard J-P (1985) Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res 18:10–23CrossRefPubMed Victorri B, Vinet A, Roberge FA, Drouhard J-P (1985) Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res 18:10–23CrossRefPubMed
11.
go back to reference Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501–1526CrossRefPubMed Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501–1526CrossRefPubMed
12.
go back to reference Chen MH, Chen PY, Luo CH (2016) Quadratic adaptive algorithm for solving cardiac action potential models. Comput Biol Med 77:261–273CrossRefPubMed Chen MH, Chen PY, Luo CH (2016) Quadratic adaptive algorithm for solving cardiac action potential models. Comput Biol Med 77:261–273CrossRefPubMed
14.
go back to reference Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096CrossRefPubMed Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096CrossRefPubMed
15.
go back to reference Sidje RB, Burrage K, MacNamara S (2007) Inexact uniformization method for computing transient distributions of Markov chains. SIAM J Sci Comput 29:2562–2580CrossRef Sidje RB, Burrage K, MacNamara S (2007) Inexact uniformization method for computing transient distributions of Markov chains. SIAM J Sci Comput 29:2562–2580CrossRef
17.
go back to reference Hille B (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland, MA Hille B (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland, MA
18.
go back to reference Marsh ME, Ziaratgahi ST, Spiteri RJ (2012) The secrets to the success of the Rush-Larsen method and its generalizations. IEEE Trans Biomed Eng 59:2506–2515CrossRefPubMed Marsh ME, Ziaratgahi ST, Spiteri RJ (2012) The secrets to the success of the Rush-Larsen method and its generalizations. IEEE Trans Biomed Eng 59:2506–2515CrossRefPubMed
19.
go back to reference Van Moorsel AP, Sanders WH (1997) Transient solution of Markov models by combining adaptive and standard uniformization. IEEE Trans Reliab 46:430–440CrossRef Van Moorsel AP, Sanders WH (1997) Transient solution of Markov models by combining adaptive and standard uniformization. IEEE Trans Reliab 46:430–440CrossRef
20.
go back to reference Qu Z, Garfinkel A (1999) An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng 46:1166CrossRefPubMed Qu Z, Garfinkel A (1999) An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng 46:1166CrossRefPubMed
21.
go back to reference Krishnamoorthi S, Sarkar M, Klug WS (2013) Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Int J Numer Method Biomed Eng 29:1243–1266CrossRefPubMedPubMedCentral Krishnamoorthi S, Sarkar M, Klug WS (2013) Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Int J Numer Method Biomed Eng 29:1243–1266CrossRefPubMedPubMedCentral
22.
go back to reference Torabi Ziaratgahi S, Marsh ME, Sundnes J, Spiteri RJ (2014) Stable time integration suppresses unphysical oscillations in the bidomain model. Front Phys 2:40CrossRef Torabi Ziaratgahi S, Marsh ME, Sundnes J, Spiteri RJ (2014) Stable time integration suppresses unphysical oscillations in the bidomain model. Front Phys 2:40CrossRef
23.
go back to reference Starý T, Biktashev VN (2015) Evaluating exponential integrators for Markov chain ion channel models. In: Computing in Cardiology Conference, 2015. pp 885–888 Starý T, Biktashev VN (2015) Evaluating exponential integrators for Markov chain ion channel models. In: Computing in Cardiology Conference, 2015. pp 885–888
24.
go back to reference Moreno JD, Yang PC, Bankston JR, Grandi E, Bers DM, Kass RS, Clancy CE (2013) Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening. Circ Res 113:E50–E61CrossRefPubMedPubMedCentral Moreno JD, Yang PC, Bankston JR, Grandi E, Bers DM, Kass RS, Clancy CE (2013) Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening. Circ Res 113:E50–E61CrossRefPubMedPubMedCentral
Metadata
Title
Combination of “quadratic adaptive algorithm” and “hybrid operator splitting” or uniformization algorithms for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model
Authors
Xing-Ji Chen
Ching-Hsing Luo
Min-Hung Chen
Xiang Zhou
Publication date
23-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 6/2019
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-01956-5

Other articles of this Issue 6/2019

Medical & Biological Engineering & Computing 6/2019 Go to the issue

Premium Partner