Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 6/2019

04-03-2019 | Original Article

Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study

Authors: Manon Sterba, Carl-Éric Aubin, Eric Wagnac, Leo Fradet, Pierre-Jean Arnoux

Published in: Medical & Biological Engineering & Computing | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traumatic events may lead to lumbar spine injuries ranging from low severity bony fracture to complex fracture dislocation. Injury pathomechanisms as well as the influence of loading rate and ligament mechanical properties were not yet fully elucidated. The objective was to quantify the influence of impact velocity and ligament properties variability on the lumbar spine response in traumatic flexion-shear conditions. An L1-L3 finite element spinal segment was submitted to a posterior-anterior impact at three velocities (2.7, 5, or 10 m/s) and for 27 sets of ligament properties. Spinal injury pathomechanism varied according to the impact velocities: initial osseous compression in the anterior column for low and medium velocities versus distraction in the posterior column for high velocity. Impact at 2.7 and 5 m/s lead to higher extent of bony injury, i.e., volume of ruptured bone, compared to the impact at 10 m/s (1140, 1094, and 718 mm3 respectively), lower L2 anterior displacement (2.09, 5.36, and 7.72 mm respectively), and lower facet fracture occurrence. Ligament properties had no effect on bony injury initiation but influenced the presence of facet fracture. These results improve the understanding of lumbar injury pathomechanisms and provide additional knowledge of lumbar injury load thresholds that could be used for injury prevention.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Leucht P, Fischer K, Muhr G, Mueller EJ (2009) Epidemiology of traumatic spine fractures. Injury 40:166–172CrossRefPubMed Leucht P, Fischer K, Muhr G, Mueller EJ (2009) Epidemiology of traumatic spine fractures. Injury 40:166–172CrossRefPubMed
3.
go back to reference Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefPubMed Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefPubMed
4.
go back to reference Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMed Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMed
5.
go back to reference Vaccaro AR, Lehman RA Jr, Hurlbert J, Anderson PA, Harris M, Fehlings MG et al (2005) A new classification of thoracolumbar injuries. Spine 30:2325–2333CrossRefPubMed Vaccaro AR, Lehman RA Jr, Hurlbert J, Anderson PA, Harris M, Fehlings MG et al (2005) A new classification of thoracolumbar injuries. Spine 30:2325–2333CrossRefPubMed
6.
go back to reference Aebi M (2010) Classification of thoracolumbar fractures and dislocations. Eur Spine J 19:2–7CrossRef Aebi M (2010) Classification of thoracolumbar fractures and dislocations. Eur Spine J 19:2–7CrossRef
7.
go back to reference Joaquim AF, Patel AA, Schroeder GD, Vaccaro AR (2018) A simplified treatment algorithm for treating thoracic and lumbar spine trauma. J Spinal Cord Med:1–11 Joaquim AF, Patel AA, Schroeder GD, Vaccaro AR (2018) A simplified treatment algorithm for treating thoracic and lumbar spine trauma. J Spinal Cord Med:1–11
8.
go back to reference Santiago FR, Muñoz PT, Sánchez EM, Paniza MR, Martínez AM, Abela ALP (2016) Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 6:772–784CrossRef Santiago FR, Muñoz PT, Sánchez EM, Paniza MR, Martínez AM, Abela ALP (2016) Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 6:772–784CrossRef
9.
go back to reference Yoganandan N, Nahum AM, Melvin JW (2014) Accidental injury: biomechanics and prevention. Springer, Berlin Yoganandan N, Nahum AM, Melvin JW (2014) Accidental injury: biomechanics and prevention. Springer, Berlin
10.
go back to reference Hoshikawa T, Tanaka Y, Kokubun S, Lu WW, Luk KD, Leong JC (2002) Flexion–distraction injuries in the thoracolumbar spine: an in vitro study of the relation between flexion angle and the motion axis of fracture. Clinical Spine Surgery 15:139–143 Hoshikawa T, Tanaka Y, Kokubun S, Lu WW, Luk KD, Leong JC (2002) Flexion–distraction injuries in the thoracolumbar spine: an in vitro study of the relation between flexion angle and the motion axis of fracture. Clinical Spine Surgery 15:139–143
12.
go back to reference Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine Injury biomechanics. In: Yoganandan N, Nahum AM, Melvin JW (eds) Accidental injury: biomechanics and prevention. Springer, New York, pp 451–470 Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine Injury biomechanics. In: Yoganandan N, Nahum AM, Melvin JW (eds) Accidental injury: biomechanics and prevention. Springer, New York, pp 451–470
13.
go back to reference Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52:87–94CrossRefPubMed Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52:87–94CrossRefPubMed
14.
go back to reference Osvalder AL, Neumann P, Lövsund P, Nordwall A (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26:1227–1236CrossRefPubMed Osvalder AL, Neumann P, Lövsund P, Nordwall A (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26:1227–1236CrossRefPubMed
15.
go back to reference Lee KK, Teo EC (2005) Material sensitivity study on lumbar motion segment (L2-L3) under sagittal plane loadings using probabilistic method. J Spinal Disord Tech 18:163–170CrossRefPubMed Lee KK, Teo EC (2005) Material sensitivity study on lumbar motion segment (L2-L3) under sagittal plane loadings using probabilistic method. J Spinal Disord Tech 18:163–170CrossRefPubMed
16.
go back to reference Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS (2012) Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater 10:216–226CrossRefPubMed Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS (2012) Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater 10:216–226CrossRefPubMed
17.
go back to reference Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine 32:2970–2979CrossRefPubMed Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine 32:2970–2979CrossRefPubMed
18.
go back to reference Coombs DJ, Rullkoetter PJ, Laz PJ (2016) Quantifying variability in lumbar L4-L5 soft tissue properties for use in finite-element analysis. J Verif Valid Uncert 1:031007CrossRef Coombs DJ, Rullkoetter PJ, Laz PJ (2016) Quantifying variability in lumbar L4-L5 soft tissue properties for use in finite-element analysis. J Verif Valid Uncert 1:031007CrossRef
19.
go back to reference Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M (2018) Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech 70:33–42CrossRefPubMed Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M (2018) Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech 70:33–42CrossRefPubMed
20.
go back to reference Putzer M, Auer S, Malpica W, Suess F, Dendorfer S (2016) A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord 17:95CrossRefPubMedPubMedCentral Putzer M, Auer S, Malpica W, Suess F, Dendorfer S (2016) A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord 17:95CrossRefPubMedPubMedCentral
21.
go back to reference Schmitt K-U, Zürich PFNE, Muser MH, Walz F (2013) Trauma biomechanics: introduction to accidental injury. Springer Science & Business Media, Berlin Schmitt K-U, Zürich PFNE, Muser MH, Walz F (2013) Trauma biomechanics: introduction to accidental injury. Springer Science & Business Media, Berlin
22.
go back to reference Zheng J, Tang L, Hu J (2018) A numerical investigation of risk factors affecting lumbar spine injuries using a detailed lumbar model. Appl Bionics Biomech 2018:1–8CrossRef Zheng J, Tang L, Hu J (2018) A numerical investigation of risk factors affecting lumbar spine injuries using a detailed lumbar model. Appl Bionics Biomech 2018:1–8CrossRef
23.
go back to reference El-Rich M, Arnoux P-J, Wagnac E, Brunet C, Aubin C-E (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42:1252–1262CrossRefPubMed El-Rich M, Arnoux P-J, Wagnac E, Brunet C, Aubin C-E (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42:1252–1262CrossRefPubMed
24.
go back to reference Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915CrossRefPubMed Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915CrossRefPubMed
25.
go back to reference Ogden RW (1984) Non-linear elastic deformations. Elsevier, Amsterdam Ogden RW (1984) Non-linear elastic deformations. Elsevier, Amsterdam
26.
go back to reference Wagnac E, Arnoux P-J, Garo A, El-Rich M, Aubin C-E (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133:101007CrossRefPubMed Wagnac E, Arnoux P-J, Garo A, El-Rich M, Aubin C-E (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133:101007CrossRefPubMed
27.
go back to reference Garo A, Arnoux PJ, Wagnac E, Aubin CE (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49:1371–1379CrossRefPubMed Garo A, Arnoux PJ, Wagnac E, Aubin CE (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49:1371–1379CrossRefPubMed
28.
go back to reference Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356CrossRefPubMed Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356CrossRefPubMed
29.
go back to reference White AA, Panjabi MM (1990) Clinical biomechanics of the spine, vol 2. Lippincott, Philadelphia White AA, Panjabi MM (1990) Clinical biomechanics of the spine, vol 2. Lippincott, Philadelphia
30.
go back to reference Ivancic PC, Coe MP, Ndu AB, Tominaga Y, Carlson EJ, Rubin W, Dipl-Ing FH, Panjabi MM (2007) Dynamic mechanical properties of intact human cervical spine ligaments. Spine J 7:659–665CrossRefPubMedPubMedCentral Ivancic PC, Coe MP, Ndu AB, Tominaga Y, Carlson EJ, Rubin W, Dipl-Ing FH, Panjabi MM (2007) Dynamic mechanical properties of intact human cervical spine ligaments. Spine J 7:659–665CrossRefPubMedPubMedCentral
31.
go back to reference Iwaskiw AS, Armiger RS, Ott KA, Wickwire ACM, Merkle AC (2012) Response of individual thoracolumbar spine ligaments under high-rate deformation. Biomed Sci Instrum 48:194–201PubMed Iwaskiw AS, Armiger RS, Ott KA, Wickwire ACM, Merkle AC (2012) Response of individual thoracolumbar spine ligaments under high-rate deformation. Biomed Sci Instrum 48:194–201PubMed
32.
go back to reference Butt AM, Gill C, Demerdash A, Watanabe K, Loukas M, Rozzelle CJ, Tubbs RS (2015) A comprehensive review of the sub-axial ligaments of the vertebral column: part I anatomy and function. Childs Nerv Syst 31:1037–1059CrossRefPubMed Butt AM, Gill C, Demerdash A, Watanabe K, Loukas M, Rozzelle CJ, Tubbs RS (2015) A comprehensive review of the sub-axial ligaments of the vertebral column: part I anatomy and function. Childs Nerv Syst 31:1037–1059CrossRefPubMed
33.
go back to reference Lasswell TL, Cronin DS, Medley JB, Rasoulinejad P (2017) Incorporating ligament laxity in a finite element model for the upper cervical spine. Spine J 17:1755–1764CrossRefPubMed Lasswell TL, Cronin DS, Medley JB, Rasoulinejad P (2017) Incorporating ligament laxity in a finite element model for the upper cervical spine. Spine J 17:1755–1764CrossRefPubMed
34.
go back to reference Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke H-J (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRef Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke H-J (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRef
35.
go back to reference Jaramillo HE, Puttlitz CM, McGilvray K, García JJ (2016) Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. J Biomech 49:1248–1254CrossRefPubMed Jaramillo HE, Puttlitz CM, McGilvray K, García JJ (2016) Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. J Biomech 49:1248–1254CrossRefPubMed
36.
go back to reference Schwab F, Lafage V, Boyce R, Skalli W, Farcy J-P (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31:E959–E967CrossRefPubMed Schwab F, Lafage V, Boyce R, Skalli W, Farcy J-P (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31:E959–E967CrossRefPubMed
37.
go back to reference Belwadi A, Yang K (2008) Response of the cadaveric lumbar spine to flexion with and without anterior shear displacement. In: Proc IRCOBI Conf, pp 397–410 Belwadi A, Yang K (2008) Response of the cadaveric lumbar spine to flexion with and without anterior shear displacement. In: Proc IRCOBI Conf, pp 397–410
38.
go back to reference Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine injury biomechanics. In: Accidental Injury (ed) Springer, pp 451–470 Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine injury biomechanics. In: Accidental Injury (ed) Springer, pp 451–470
39.
go back to reference Tsou PM, Wang J, Khoo L, Shamie AN, Holly L (2006) A thoracic and lumbar spine injury severity classification based on neurologic function grade, spinal canal deformity, and spinal biomechanical stability. Spine J 6:636–647CrossRefPubMed Tsou PM, Wang J, Khoo L, Shamie AN, Holly L (2006) A thoracic and lumbar spine injury severity classification based on neurologic function grade, spinal canal deformity, and spinal biomechanical stability. Spine J 6:636–647CrossRefPubMed
40.
go back to reference Mitchell R, Bambach M, Toson B (2015) Injury risk for matched front and rear seat car passengers by injury severity and crash type: an exploratory study. Accid Anal Prev 82:171–179CrossRefPubMed Mitchell R, Bambach M, Toson B (2015) Injury risk for matched front and rear seat car passengers by injury severity and crash type: an exploratory study. Accid Anal Prev 82:171–179CrossRefPubMed
41.
go back to reference Müller CW, Otte D, Decker S, Stübig T, Panzica M, Krettek C, Brand S (2014) Vertebral fractures in motor vehicle accidents–a medical and technical analysis of 33,015 injured front-seat occupants. Accid Anal Prev 66:15–19CrossRefPubMed Müller CW, Otte D, Decker S, Stübig T, Panzica M, Krettek C, Brand S (2014) Vertebral fractures in motor vehicle accidents–a medical and technical analysis of 33,015 injured front-seat occupants. Accid Anal Prev 66:15–19CrossRefPubMed
42.
go back to reference Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46:2342–2355CrossRefPubMed Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46:2342–2355CrossRefPubMed
43.
go back to reference Siegmund GP, Chimich v, Elkin BS (2015) Role of muscles in accidental injury. In: Accidental injury (ed) Springer, pp 611–642 Siegmund GP, Chimich v, Elkin BS (2015) Role of muscles in accidental injury. In: Accidental injury (ed) Springer, pp 611–642
Metadata
Title
Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study
Authors
Manon Sterba
Carl-Éric Aubin
Eric Wagnac
Leo Fradet
Pierre-Jean Arnoux
Publication date
04-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 6/2019
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-01964-5

Other articles of this Issue 6/2019

Medical & Biological Engineering & Computing 6/2019 Go to the issue

Premium Partner