Skip to main content
Top
Published in: Cognitive Computation 6/2018

01-08-2018

Combining Non-negative Matrix Factorization and Sparse Coding for Functional Brain Overlapping Community Detection

Authors: X. Li, Z. Hu, H. Wang

Published in: Cognitive Computation | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The functional system of the human brain can be viewed as a complex network. Among various features of the brain functional network, community structure has raised significant interest in recent years. Increasing evidence has revealed that most realistic complex networks have an overlapping community structure. However, the overlapping community structure of the brain functional network has not been adequately studied. In this paper, we propose a novel method called sparse symmetric non-negative matrix factorization (ssNMF) to detect the overlapping community structure of the brain functional network. Specifically, it is formulated by combining the effective techniques of non-negative matrix factorization and sparse coding. Besides, the non-negative adaptive sparse representation is applied to construct the whole-brain functional network, based on which ssNMF is performed to detect the community structure. Both simulated and real functional magnetic resonance imaging data are used to evaluate ssNMF. The experimental results demonstrate that the proposed ssNMF method is capable of accurately and stably detecting the underlying overlapping community structure. Moreover, the physiological interpretation of the overlapping community structure detected by ssNMF is straightforward. This novel framework, we think, provides an effective tool to study overlapping community structure and facilitates the understanding of the network organization of the functional human brain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMedCrossRef Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMedCrossRef
3.
go back to reference Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 2014;17(5): 652–660.PubMedCrossRef Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 2014;17(5): 652–660.PubMedCrossRef
6.
go back to reference Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: From organisms to robots. Cogn Comput 2009;1(1):104–117.CrossRef Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: From organisms to robots. Cogn Comput 2009;1(1):104–117.CrossRef
7.
go back to reference Yan X. Dissociated emergent response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots. Cogn Comput 2011;3(2):367–373.CrossRef Yan X. Dissociated emergent response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots. Cogn Comput 2011;3(2):367–373.CrossRef
8.
go back to reference Mohan V, Morasso P, Sandini G, Kasderidis S. Inference through embodied simulation in cognitive robots. Cogn Comput 2013;5(3):355–382.CrossRef Mohan V, Morasso P, Sandini G, Kasderidis S. Inference through embodied simulation in cognitive robots. Cogn Comput 2013;5(3):355–382.CrossRef
9.
10.
go back to reference Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, Bullmore E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012;59(4):3889–3900.PubMedCrossRef Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, Bullmore E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012;59(4):3889–3900.PubMedCrossRef
11.
go back to reference Thirion B, Dodel S, Poline JB. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 2006;29(1):321–327.PubMedCrossRef Thirion B, Dodel S, Poline JB. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 2006;29(1):321–327.PubMedCrossRef
12.
go back to reference van Den Heuvel M, Mandl R, Pol HH. Normalized cut group clustering of resting-state fMRI data. PloS ONE 2008;3(4):e2001.CrossRef van Den Heuvel M, Mandl R, Pol HH. Normalized cut group clustering of resting-state fMRI data. PloS ONE 2008;3(4):e2001.CrossRef
14.
go back to reference Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.CrossRef Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.CrossRef
15.
go back to reference Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016;659:1–44.CrossRef Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016;659:1–44.CrossRef
16.
go back to reference Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005;435(7043):814.PubMedCrossRef Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005;435(7043):814.PubMedCrossRef
17.
go back to reference Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 2009;31(2):260–274.PubMedCrossRef Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 2009;31(2):260–274.PubMedCrossRef
18.
go back to reference Xu C, Tao D, Xu C. Multi-view learning with incomplete views. IEEE Trans Image Process 2015;24 (12):5812–5825.PubMedCrossRef Xu C, Tao D, Xu C. Multi-view learning with incomplete views. IEEE Trans Image Process 2015;24 (12):5812–5825.PubMedCrossRef
19.
go back to reference Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fusion 2018;41:119–128.CrossRef Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fusion 2018;41:119–128.CrossRef
20.
go back to reference Ding C, He X, Simon HD. On the equivalence of non-negative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining; 2005. p. 606–610. Ding C, He X, Simon HD. On the equivalence of non-negative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining; 2005. p. 606–610.
21.
go back to reference Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv 2013;45(4):43.CrossRef Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv 2013;45(4):43.CrossRef
22.
go back to reference Zarei M, Izadi D, Samani KA. Detecting overlapping community structure of networks based on vertex–vertex correlations. J Stat Mech-Theory Exp 2009;11:P11013.CrossRef Zarei M, Izadi D, Samani KA. Detecting overlapping community structure of networks based on vertex–vertex correlations. J Stat Mech-Theory Exp 2009;11:P11013.CrossRef
23.
go back to reference Psorakis I, Roberts S, Ebden M, Sheldon B. Overlapping community detection using bayesian non-negative matrix factorization. Phys Rev E 2011;83(6):066114.CrossRef Psorakis I, Roberts S, Ebden M, Sheldon B. Overlapping community detection using bayesian non-negative matrix factorization. Phys Rev E 2011;83(6):066114.CrossRef
24.
go back to reference Yang J, Leskovec J. Overlapping community detection at scale: a non-negative matrix factorization approach. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining; 2013. p. 587–596. Yang J, Leskovec J. Overlapping community detection at scale: a non-negative matrix factorization approach. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining; 2013. p. 587–596.
25.
go back to reference Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using non-negative matrix factorization. Data Min Knowl Discov 2011;22(3):493–521.CrossRef Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using non-negative matrix factorization. Data Min Knowl Discov 2011;22(3):493–521.CrossRef
26.
go back to reference Li X, Hu Z, Wang H. Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: International Conference on Neural Information Processing (ICONIP); 2016. p. 140–147. Li X, Hu Z, Wang H. Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: International Conference on Neural Information Processing (ICONIP); 2016. p. 140–147.
27.
go back to reference Chen S, Xin Y, Luo B. Action-based pedestrian identification via hierarchical matching pursuit and order preserving sparse coding. Cogn Comput 2016;8(5):797–805.CrossRef Chen S, Xin Y, Luo B. Action-based pedestrian identification via hierarchical matching pursuit and order preserving sparse coding. Cogn Comput 2016;8(5):797–805.CrossRef
28.
go back to reference Lv L, Zhao D, Deng Q. A semi-supervised predictive sparse decomposition based on task-driven dictionary learning. Cogn Comput 2017;9(1):115–124.CrossRef Lv L, Zhao D, Deng Q. A semi-supervised predictive sparse decomposition based on task-driven dictionary learning. Cogn Comput 2017;9(1):115–124.CrossRef
29.
go back to reference Liu M, Xu C, Luo Y, Xu C, Wen Y, Tao D. Cost-sensitive feature selection by optimizing F-measures. IEEE Trans Image Process 2018;27(3):1323–1335.CrossRef Liu M, Xu C, Luo Y, Xu C, Wen Y, Tao D. Cost-sensitive feature selection by optimizing F-measures. IEEE Trans Image Process 2018;27(3):1323–1335.CrossRef
30.
go back to reference Li Y, Yu Z, Bi N, Xu Y, Gu Z, Amari S. Sparse representation for brain signal processing: a tutorial on methods and applications. IEEE Signal Process Mag 2014;31(3):96–106.CrossRef Li Y, Yu Z, Bi N, Xu Y, Gu Z, Amari S. Sparse representation for brain signal processing: a tutorial on methods and applications. IEEE Signal Process Mag 2014;31(3):96–106.CrossRef
31.
go back to reference Xie J, Douglas PK, Wu YN, Brody AL, Anderson AE. Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J Neurosci Method 2017;282:81–94.CrossRef Xie J, Douglas PK, Wu YN, Brody AL, Anderson AE. Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J Neurosci Method 2017;282:81–94.CrossRef
32.
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–541.PubMedCrossRef Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–541.PubMedCrossRef
33.
go back to reference Li X, Hu Z, Wang H. Sparse-network based framework for detecting the overlapping community structure of brain functional network. In: Advances in Brain Inspired Cognitive Systems; 2016. p. 355–365. Li X, Hu Z, Wang H. Sparse-network based framework for detecting the overlapping community structure of brain functional network. In: Advances in Brain Inspired Cognitive Systems; 2016. p. 355–365.
34.
go back to reference Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401(6755): 788–791.PubMedCrossRef Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401(6755): 788–791.PubMedCrossRef
35.
go back to reference Guan N, Tao D, Luo Z, Shawe-Taylor J. 2012. MahNMF: Manhattan non-negative matrix factorization. arXiv:1207.3438. Guan N, Tao D, Luo Z, Shawe-Taylor J. 2012. MahNMF: Manhattan non-negative matrix factorization. arXiv:1207.​3438.
36.
go back to reference Liu T, Gong M, Tao D. Large-cone non-negative matrix factorization. IEEE Trans Neural Netw Learn Syst 2017;28(9):2129– 2142.PubMed Liu T, Gong M, Tao D. Large-cone non-negative matrix factorization. IEEE Trans Neural Netw Learn Syst 2017;28(9):2129– 2142.PubMed
37.
go back to reference Shan D, Xu X, Liang T, Ding S. Rank-adaptive non-negative matrix factorization. Cogn Comput. 2018;10(3):506–515.CrossRef Shan D, Xu X, Liang T, Ding S. Rank-adaptive non-negative matrix factorization. Cogn Comput. 2018;10(3):506–515.CrossRef
38.
go back to reference Padilla P, López M, Górriz J M, Ramirez J, Salas-Gonzalez D, Álvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans Med Imaging 2012; 31(2):207–216.PubMedCrossRef Padilla P, López M, Górriz J M, Ramirez J, Salas-Gonzalez D, Álvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans Med Imaging 2012; 31(2):207–216.PubMedCrossRef
39.
go back to reference Wang Y, Zhang Y. Non-negative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013;25(6):1336–1353.CrossRef Wang Y, Zhang Y. Non-negative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013;25(6):1336–1353.CrossRef
40.
go back to reference Zhang Z, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric binary matrix factorization. Phys Rev E 2013;87(6):062803.CrossRef Zhang Z, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric binary matrix factorization. Phys Rev E 2013;87(6):062803.CrossRef
41.
go back to reference Zhang Y, Yeung DY. Overlapping community detection via bounded non-negative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2012. p. 606–614. Zhang Y, Yeung DY. Overlapping community detection via bounded non-negative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2012. p. 606–614.
42.
go back to reference Zhang Z, Xu Y, Yang J, Li X, Zhang D. A survey of sparse representation: algorithms and applications. IEEE Access 2015;3:490–530.CrossRef Zhang Z, Xu Y, Yang J, Li X, Zhang D. A survey of sparse representation: algorithms and applications. IEEE Access 2015;3:490–530.CrossRef
43.
go back to reference Donoho DL, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via ℓ 1 minimization. Proc Natl Acad Sci 2003;100(5):2197–2202.PubMedCrossRefPubMedCentral Donoho DL, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via 1 minimization. Proc Natl Acad Sci 2003;100(5):2197–2202.PubMedCrossRefPubMedCentral
44.
go back to reference Guo S, Wang Z, Ruan Q. Enhancing sparsity via ℓ p(0 < p < 1) minimization for robust face recognition. Neurocomputing 2013;99:592–602.CrossRef Guo S, Wang Z, Ruan Q. Enhancing sparsity via p(0 < p < 1) minimization for robust face recognition. Neurocomputing 2013;99:592–602.CrossRef
45.
go back to reference Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Advances in Neural Information Processing Systems; 2009. p. 82–89. Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Advances in Neural Information Processing Systems; 2009. p. 82–89.
46.
go back to reference Liu W, Zha Z, Wang Y, Lu K, Tao D. P-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 2016;63(8):5120–5129. Liu W, Zha Z, Wang Y, Lu K, Tao D. P-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 2016;63(8):5120–5129.
47.
go back to reference Hoyer PO. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing; 2002. p. 557–565. Hoyer PO. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing; 2002. p. 557–565.
48.
go back to reference Hoyer PO. Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 2004;5(Nov): 1457–1469. Hoyer PO. Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 2004;5(Nov): 1457–1469.
49.
go back to reference Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005;21(21):3970–3975.PubMedCrossRef Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005;21(21):3970–3975.PubMedCrossRef
50.
go back to reference Grave E, Obozinski GR. Bach FR. Trace lasso: a trace norm regularization for correlated designs. In: Advances in Neural Information Processing Systems; 2011. p. 2187–2195. Grave E, Obozinski GR. Bach FR. Trace lasso: a trace norm regularization for correlated designs. In: Advances in Neural Information Processing Systems; 2011. p. 2187–2195.
51.
go back to reference Lu C, Feng J, Lin Z, Yan S. Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision; 2013. p. 1345–1352. Lu C, Feng J, Lin Z, Yan S. Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision; 2013. p. 1345–1352.
52.
go back to reference Li X, Wang H. Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering. Front Neurosci 2015;9:383.PubMedPubMedCentral Li X, Wang H. Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering. Front Neurosci 2015;9:383.PubMedPubMedCentral
53.
go back to reference Lin CJ. On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Trans Neural Netw 2007;18(6):1589–1596.CrossRef Lin CJ. On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Trans Neural Netw 2007;18(6):1589–1596.CrossRef
55.
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008;2008(10):P10008.CrossRef Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008;2008(10):P10008.CrossRef
56.
go back to reference Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 2000;22(8): 888–905.CrossRef Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 2000;22(8): 888–905.CrossRef
57.
go back to reference Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007;315(5814):972–976.PubMedCrossRef Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007;315(5814):972–976.PubMedCrossRef
58.
go back to reference Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C. Identifying sparse connectivity patterns in the brain using resting-state fMRI. Neuroimage 2015;105:286– 299.PubMedCrossRef Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C. Identifying sparse connectivity patterns in the brain using resting-state fMRI. Neuroimage 2015;105:286– 299.PubMedCrossRef
59.
go back to reference Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW. Network modelling methods for fMRI. Neuroimage 2011;54(2):875–891.PubMedCrossRef Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW. Network modelling methods for fMRI. Neuroimage 2011;54(2):875–891.PubMedCrossRef
60.
go back to reference Lovász L, Plummer MD. Matching theory. Ann Discret Math. 1986;29:1–543. Lovász L, Plummer MD. Matching theory. Ann Discret Math. 1986;29:1–543.
61.
go back to reference Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining; 2013. p. 587–596. Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining; 2013. p. 587–596.
62.
go back to reference McDaid AF, Greene D, Hurley N. 2011. Normalized mutual information to evaluate overlapping community finding algorithms. arXiv:1110.2515. McDaid AF, Greene D, Hurley N. 2011. Normalized mutual information to evaluate overlapping community finding algorithms. arXiv:1110.​2515.
63.
go back to reference Gregory S. Fuzzy overlapping communities in networks. J Stat Mech: Theory Exp 2011;2011(02):P02017.CrossRef Gregory S. Fuzzy overlapping communities in networks. J Stat Mech: Theory Exp 2011;2011(02):P02017.CrossRef
64.
go back to reference Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci 2010;107(10):4734–4739.PubMedCrossRefPubMedCentral Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci 2010;107(10):4734–4739.PubMedCrossRefPubMedCentral
65.
go back to reference Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 2014;1:140049.PubMedPubMedCentralCrossRef Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 2014;1:140049.PubMedPubMedCentralCrossRef
66.
go back to reference Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z. Individual variability and test–retest reliability revealed by ten repeated resting-state brain scans over one month. PloS ONE 2015;10:e0144963.PubMedPubMedCentralCrossRef Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z. Individual variability and test–retest reliability revealed by ten repeated resting-state brain scans over one month. PloS ONE 2015;10:e0144963.PubMedPubMedCentralCrossRef
67.
go back to reference Yan C, Zang Y. DPARSF: A matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13. Yan C, Zang Y. DPARSF: A matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13.
68.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–289.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–289.PubMedCrossRef
69.
go back to reference Campello RJGB, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Set Syst 2006;157(21):2858–2875.CrossRef Campello RJGB, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Set Syst 2006;157(21):2858–2875.CrossRef
70.
go back to reference Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008;42:1178–1184.PubMedCrossRef Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008;42:1178–1184.PubMedCrossRef
71.
go back to reference van den Heuvel MP, Pol HEH. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–534.CrossRef van den Heuvel MP, Pol HEH. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–534.CrossRef
72.
go back to reference Isaacson R. The limbic system. Berlin: Springer Science & Business Media; 2013. Isaacson R. The limbic system. Berlin: Springer Science & Business Media; 2013.
73.
go back to reference Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neurosci 2013;16(9):1348– 1355.PubMedCrossRef Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neurosci 2013;16(9):1348– 1355.PubMedCrossRef
74.
go back to reference Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001;54(3):287–298.PubMedCrossRef Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001;54(3):287–298.PubMedCrossRef
75.
go back to reference Yeo BTT, Krienen FM, Chee MWL, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2014;88:212–227.PubMedCrossRef Yeo BTT, Krienen FM, Chee MWL, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2014;88:212–227.PubMedCrossRef
76.
go back to reference van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 2013;17:683–696.CrossRef van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 2013;17:683–696.CrossRef
78.
go back to reference Kong D, Fujimaki R, Liu J, Nie F, Ding C. Exclusive feature learning on arbitrary structures via ℓ 1,2-norm. In: Advances in Neural Information Processing Systems; 2014. p. 1655–1663. Kong D, Fujimaki R, Liu J, Nie F, Ding C. Exclusive feature learning on arbitrary structures via 1,2-norm. In: Advances in Neural Information Processing Systems; 2014. p. 1655–1663.
79.
go back to reference He Z, Xie S, Zdunek R, Zhou G, Cichocki A. Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Trans Neural Netw 2011;22(12):2117–2131.PubMedCrossRef He Z, Xie S, Zdunek R, Zhou G, Cichocki A. Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Trans Neural Netw 2011;22(12):2117–2131.PubMedCrossRef
80.
go back to reference Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM International Conference on Data Mining; 2012. p. 106–117. Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM International Conference on Data Mining; 2012. p. 106–117.
81.
go back to reference Huang K, Sidiropoulos ND, Swami A. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans Signal Process 2014; 62 (1): 211– 224.CrossRef Huang K, Sidiropoulos ND, Swami A. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans Signal Process 2014; 62 (1): 211– 224.CrossRef
Metadata
Title
Combining Non-negative Matrix Factorization and Sparse Coding for Functional Brain Overlapping Community Detection
Authors
X. Li
Z. Hu
H. Wang
Publication date
01-08-2018
Publisher
Springer US
Published in
Cognitive Computation / Issue 6/2018
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9585-6

Other articles of this Issue 6/2018

Cognitive Computation 6/2018 Go to the issue

Premium Partner