Skip to main content
Top
Published in: Journal of Computational Electronics 1/2020

06-11-2019

Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications

Authors: Akanksha Gupta, D. K. Srivastava, J. P. Saini, Ramesh Kumar Verma

Published in: Journal of Computational Electronics | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An attempt is made to improve the impedance bandwidth (S11) of a microstrip antenna by means of the gap-coupling method, yielding a bandwidth of 97.88% for the gap-coupled rectangular microstrip antenna (GC-RMSA) compared with 7.67% for the direct-coupled rectangular microstrip antenna with all dimensions the same. The maximum gain of the proposed (GC-RMSA) design is 6.725 dB with antenna efficiency of 99.86%. The proposed antenna design is analyzed using the IE3D simulator. The microstrip line feed technique is used to energize the antenna, and its performance as a function of the gap between the elements (g) and the width of the feed strip (W) is investigated. The results show that the impedance bandwidth of the gap-coupled antenna depends on the coupling gap between the elements; indeed, as the gap (g) is increased up to a certain level, the bandwidth of the proposed antenna increases, resulting in a wideband characteristic. However, after a certain value of the gap (g), the bandwidth decreases due to spurious radiation, and the antenna characteristic changes from wide to dual band with a corresponding decrease in the bandwidth. The proposed antenna design covers the frequency range from 2.093 to 6.105 GHz, including the C-band, S-band uplink and downlink frequencies, Wi-Fi, Bluetooth, WLAN, and IEEE (a/b/g) standard applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deschamps, G.A.: Microstrip microwave antennas. Presented at the 3rd USAF symposium on antennas, vol. 1, pp. 189–195 (1953) Deschamps, G.A.: Microstrip microwave antennas. Presented at the 3rd USAF symposium on antennas, vol. 1, pp. 189–195 (1953)
2.
go back to reference Munson, R.E., Krutsinger, J.K.: Single slot cavity antennas assembly, U.S. patent no. 3713162 (1973) Munson, R.E., Krutsinger, J.K.: Single slot cavity antennas assembly, U.S. patent no. 3713162 (1973)
3.
go back to reference Munson, R.E.: Conformal microstrip antennas and microstrip phased arrays. IEEE Trans. Antennas Propag. 23, 74–78 (1974)CrossRef Munson, R.E.: Conformal microstrip antennas and microstrip phased arrays. IEEE Trans. Antennas Propag. 23, 74–78 (1974)CrossRef
4.
go back to reference Howell, J.Q.: Microstrip antenna. IEEE Trans. Antennas Propag. 23(1), 90–93 (1975)CrossRef Howell, J.Q.: Microstrip antenna. IEEE Trans. Antennas Propag. 23(1), 90–93 (1975)CrossRef
5.
go back to reference Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980) Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980)
6.
go back to reference Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House Antennas and Propagation library Ingeniería Electrónica, Dedham (2002) Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House Antennas and Propagation library Ingeniería Electrónica, Dedham (2002)
7.
go back to reference Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592 (2014)CrossRef Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592 (2014)CrossRef
8.
go back to reference Alkanhal, M.A., Sheta, A.F.: A novel dual-band reconfigurable square-ring microstrip antenna. Prog. Electromagn. Res. PIER 70, 337–349 (2007)CrossRef Alkanhal, M.A., Sheta, A.F.: A novel dual-band reconfigurable square-ring microstrip antenna. Prog. Electromagn. Res. PIER 70, 337–349 (2007)CrossRef
9.
go back to reference Shivnarayan, Vishvakarma, B.R.: Analysis of notch-loaded patch for dual-band operation. Indian J. Radio Space Phys. 35, 435–442 (2006) Shivnarayan, Vishvakarma, B.R.: Analysis of notch-loaded patch for dual-band operation. Indian J. Radio Space Phys. 35, 435–442 (2006)
10.
go back to reference Abutarboush, H.F., Nilavalan, R., Cheung, S.W., Nasr, K.M., Peter, T., Budimir, D., Raweshidy, H.A.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. 60(1), 36–43 (2012)CrossRef Abutarboush, H.F., Nilavalan, R., Cheung, S.W., Nasr, K.M., Peter, T., Budimir, D., Raweshidy, H.A.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. 60(1), 36–43 (2012)CrossRef
11.
go back to reference Hu, W., Yin, Y.Z., Yang, X., Ren, X.S.: Compact printed antenna with h shaped stub for dual-band operation. Electron. Lett. 46(25), 1644–1645 (2010)CrossRef Hu, W., Yin, Y.Z., Yang, X., Ren, X.S.: Compact printed antenna with h shaped stub for dual-band operation. Electron. Lett. 46(25), 1644–1645 (2010)CrossRef
12.
go back to reference Ansari, J.A., Singh, P., Dubey, S.K., Khan, R.U., Vishvakarma, B.R.: H-shaped stacked patch antenna for dual band operation. Prog. Electromagn. Res. B 5, 291–302 (2008)CrossRef Ansari, J.A., Singh, P., Dubey, S.K., Khan, R.U., Vishvakarma, B.R.: H-shaped stacked patch antenna for dual band operation. Prog. Electromagn. Res. B 5, 291–302 (2008)CrossRef
13.
go back to reference Ang, B.K., Chung, B.K.: A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communication. Prog. Electromagn. Res. 75, 397–407 (2007)CrossRef Ang, B.K., Chung, B.K.: A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communication. Prog. Electromagn. Res. 75, 397–407 (2007)CrossRef
14.
go back to reference Wi, S.H., Lee, Y.S., Yook, J.G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55(4), 1196–1199 (2007)CrossRef Wi, S.H., Lee, Y.S., Yook, J.G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55(4), 1196–1199 (2007)CrossRef
16.
go back to reference Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini, P.: A novel circularly polarized gap-coupled wideband antenna with DGS for X/Ku-band applications. Electromagnetics 39(3), 186–197 (2019)CrossRef Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini, P.: A novel circularly polarized gap-coupled wideband antenna with DGS for X/Ku-band applications. Electromagnetics 39(3), 186–197 (2019)CrossRef
17.
go back to reference Gautam, A.K., Vishvakarma, B.R.: Analysis of varactor loaded active microstrip antenna. Microw. Opt. Technol. Lett. 49(2), 416–421 (2007)CrossRef Gautam, A.K., Vishvakarma, B.R.: Analysis of varactor loaded active microstrip antenna. Microw. Opt. Technol. Lett. 49(2), 416–421 (2007)CrossRef
19.
go back to reference Deshmukh, A., Ray, K.P.: Proximity fed gap-coupled half E-shaped microstrip antenna array. Indian Acad. Sci. 40(1), 75–87 (2015) Deshmukh, A., Ray, K.P.: Proximity fed gap-coupled half E-shaped microstrip antenna array. Indian Acad. Sci. 40(1), 75–87 (2015)
20.
go back to reference Asthana, A., Vishvakarma, B.R.: Analysis of gap coupled microstrip antenna. Int. J. Electron. 88(6), 707–718 (2001)CrossRef Asthana, A., Vishvakarma, B.R.: Analysis of gap coupled microstrip antenna. Int. J. Electron. 88(6), 707–718 (2001)CrossRef
21.
go back to reference Nour, A.A., Fezai, F., Thevenot, M., Arnaud, E., Monediere, T.: A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microw. Opt. Technol. Lett. 58(3), 597–602 (2016)CrossRef Nour, A.A., Fezai, F., Thevenot, M., Arnaud, E., Monediere, T.: A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microw. Opt. Technol. Lett. 58(3), 597–602 (2016)CrossRef
22.
go back to reference Singh, V., Mishra, B., Singh, R.: Anchor shape gap coupled patch antenna for WiMax and WLAN application. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 263–286 (2019)CrossRef Singh, V., Mishra, B., Singh, R.: Anchor shape gap coupled patch antenna for WiMax and WLAN application. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 263–286 (2019)CrossRef
23.
go back to reference Jagtap, S.D., Thakare, R., Gupta, R.K.: Low profile high gain wideband circularly polarized antennas using hexagon shape parasitic patches. Prog. Electromagn. Res. C 95, 15–27 (2019)CrossRef Jagtap, S.D., Thakare, R., Gupta, R.K.: Low profile high gain wideband circularly polarized antennas using hexagon shape parasitic patches. Prog. Electromagn. Res. C 95, 15–27 (2019)CrossRef
25.
go back to reference Zhang, J., Lu, W.J., Li, L., Zhu, L., Zhu, H.B.: Wideband dual-mode planar endfire antenna with circular polarisation. Electron. Lett. 52(12), 1000–1001 (2016)CrossRef Zhang, J., Lu, W.J., Li, L., Zhu, L., Zhu, H.B.: Wideband dual-mode planar endfire antenna with circular polarisation. Electron. Lett. 52(12), 1000–1001 (2016)CrossRef
26.
go back to reference IE3D Electromagnetic Simulation and Optimization Package, version 9.0 IE3D Electromagnetic Simulation and Optimization Package, version 9.0
Metadata
Title
Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications
Authors
Akanksha Gupta
D. K. Srivastava
J. P. Saini
Ramesh Kumar Verma
Publication date
06-11-2019
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01416-1

Other articles of this Issue 1/2020

Journal of Computational Electronics 1/2020 Go to the issue