Skip to main content
Top
Published in: Cellulose 2/2016

09-02-2016 | Original Paper

Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness

Authors: Qing Li, Wenshuai Chen, Yanna Li, Xiaoyu Guo, Shan Song, Qingwen Wang, Yixing Liu, Jian Li, Haipeng Yu, Jie Zeng

Published in: Cellulose | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article describes the comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thicknesses. Cellulose nanopapers were fabricated by vacuum-filtering cellulose nanofiber (CNF) suspensions. The surfaces of the nanopapers consisted of long and entangled CNFs (10–30 nm in width) and their aggregates, while cross-sections exhibited parallel aligned lamellar structures. The nanopaper thickness can be tailored by controlling the amounts of CNF suspensions used for filtration. Owing to the packing density of CNFs, nanopapers with different thicknesses had similar densities of ~1.50 g cm−3. The thin nanopapers were transparent and flexible. With increasing thickness, the Young’s modulus of the nanopapers slightly decreased, while the ultimate strain and work of fracture increased. The thicker nanopapers displayed higher storage and loss modulus. The nanopapers still kept advantageous mechanical properties even at high temperatures around 260 °C because of the high thermal stability of CNFs and their strong entangled web-like structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRef
go back to reference Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277CrossRef Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277CrossRef
go back to reference Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278CrossRef
go back to reference Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef
go back to reference Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRef Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRef
go back to reference Chen W, Yu H, Li Q, Liu Y, Li J (2011d) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368CrossRef Chen W, Yu H, Li Q, Liu Y, Li J (2011d) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368CrossRef
go back to reference Chen W, Abe K, Uetani K, Yu H, Liu Y, Yano H (2014a) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21(3):1517–1528CrossRef Chen W, Abe K, Uetani K, Yu H, Liu Y, Yano H (2014a) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21(3):1517–1528CrossRef
go back to reference Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J (2014b) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7(1):154–161CrossRef Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J (2014b) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7(1):154–161CrossRef
go back to reference Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773CrossRef Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773CrossRef
go back to reference Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (United States) (Vol. 37): ITT Rayonier Inc., Shelton Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (United States) (Vol. 37): ITT Rayonier Inc., Shelton
go back to reference Hsieh MC, Kim C, Nogi M, Suganuma K (2013) Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 5(19):9289–9295CrossRef Hsieh MC, Kim C, Nogi M, Suganuma K (2013) Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 5(19):9289–9295CrossRef
go back to reference Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518CrossRef Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518CrossRef
go back to reference Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7(3):2106–2113CrossRef Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7(3):2106–2113CrossRef
go back to reference Nge TT, Nogi M, Suganuma K (2013) Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J Mater Chem C 1(34):5235–5243CrossRef Nge TT, Nogi M, Suganuma K (2013) Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J Mater Chem C 1(34):5235–5243CrossRef
go back to reference Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef
go back to reference Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef
go back to reference Nogi M, Komoda N, Otsuka K, Suganuma K (2013a) Foldable nanopaper antennas for origami electronics. Nanoscale 5(10):4395–4399CrossRef Nogi M, Komoda N, Otsuka K, Suganuma K (2013a) Foldable nanopaper antennas for origami electronics. Nanoscale 5(10):4395–4399CrossRef
go back to reference Nogi M, Kim C, Sugahara T, Inui T, Takahashi T, Suganuma K (2013b) High thermal stability of optical transparency in cellulose nanofiber paper. Appl Phys Lett 102(18):181911CrossRef Nogi M, Kim C, Sugahara T, Inui T, Takahashi T, Suganuma K (2013b) High thermal stability of optical transparency in cellulose nanofiber paper. Appl Phys Lett 102(18):181911CrossRef
go back to reference Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175CrossRef Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a newcellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a newcellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
go back to reference Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353CrossRef Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353CrossRef
go back to reference Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38(04):320–325CrossRef Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38(04):320–325CrossRef
go back to reference Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6(7):2105–2111CrossRef Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6(7):2105–2111CrossRef
go back to reference Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287CrossRef Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287CrossRef
Metadata
Title
Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness
Authors
Qing Li
Wenshuai Chen
Yanna Li
Xiaoyu Guo
Shan Song
Qingwen Wang
Yixing Liu
Jian Li
Haipeng Yu
Jie Zeng
Publication date
09-02-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0857-6

Other articles of this Issue 2/2016

Cellulose 2/2016 Go to the issue