Skip to main content
Top
Published in: Neural Computing and Applications 5/2015

01-07-2015 | Original Article

Comparison of three unsupervised neural network models for first Painlevé Transcendent

Authors: Muhammad Asif Zahoor Raja, Junaid Ali Khan, Syed Muslim Shah, Raza Samar, Djilali Behloul

Published in: Neural Computing and Applications | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a reliable soft computing framework is presented for the approximate solution of initial value problem (IVP) of first Painlevé equation using three unsupervised neural network models optimized with sequential quadratic programming (SQP). These mathematical models are constructed in the form of feed-forward architecture including log-sigmoid, radial base and tan-sigmoid activation functions in the hidden layers. The optimization of designed parameters for each model is performed with SQP, an efficient constraint optimization problem-solving algorithm. The designed methodology is tested on the IVP, and comparative study is carried out with standard solution based on numerical and analytical solvers. The accuracy, convergence and effectiveness of the schemes are validated on the given benchmark problem by large number of simulations and their comprehensive analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference He JH (1999) Variational iteration method, a kind of non-linear analytical technique, some examples. Int J Nonlin Mech 34(4):699–708MATHCrossRef He JH (1999) Variational iteration method, a kind of non-linear analytical technique, some examples. Int J Nonlin Mech 34(4):699–708MATHCrossRef
3.
go back to reference He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int JModern Phys B 20(10):1144–1199 He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int JModern Phys B 20(10):1144–1199
4.
go back to reference Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Studies in Applied Mathematics 4, Philadelphia Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Studies in Applied Mathematics 4, Philadelphia
5.
go back to reference Turcotte DL, Spence DA, Bau HH (1982) Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int J Heat Mass Transfer 25(5):699–706MATHCrossRef Turcotte DL, Spence DA, Bau HH (1982) Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int J Heat Mass Transfer 25(5):699–706MATHCrossRef
6.
go back to reference Haberman R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J Appl Math 37:69–106MATHMathSciNetCrossRef Haberman R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J Appl Math 37:69–106MATHMathSciNetCrossRef
7.
go back to reference Fokas AS, Its AR, Kitaev AV (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm Math Phys 142(2):313–344MATHMathSciNetCrossRef Fokas AS, Its AR, Kitaev AV (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm Math Phys 142(2):313–344MATHMathSciNetCrossRef
9.
go back to reference Tajiri M, Kawamoto Sh (1982) Reduction of KdV and cylindrical KdV equations to Painlevé equation. J Phys Soc Jpn 51:1678–1681MathSciNetCrossRef Tajiri M, Kawamoto Sh (1982) Reduction of KdV and cylindrical KdV equations to Painlevé equation. J Phys Soc Jpn 51:1678–1681MathSciNetCrossRef
12.
go back to reference Olde Daalhuis AB (2005) Hyperasymptotics for nonlinear ODEs II. The first Painlevé equation and a second-order Riccati equation. Proc R Soc A 461:3005–3021 Olde Daalhuis AB (2005) Hyperasymptotics for nonlinear ODEs II. The first Painlevé equation and a second-order Riccati equation. Proc R Soc A 461:3005–3021
13.
go back to reference Hesameddini E, Peyrovi A (2009) The use of variational iteration method and Homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATHMathSciNet Hesameddini E, Peyrovi A (2009) The use of variational iteration method and Homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATHMathSciNet
14.
go back to reference Behzadi SS (2010) Convergence of iterative methods for solving Painlevé Equation. Appl Math Sci 4(30):1489–1507MATHMathSciNet Behzadi SS (2010) Convergence of iterative methods for solving Painlevé Equation. Appl Math Sci 4(30):1489–1507MATHMathSciNet
15.
go back to reference Raja MAZ, Khan JA, Haroon T (2014) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks, particle swarm optimization and sequential quadratic programming. J Chem Inst Taiwan. doi:10.1016/j.jtice.2014.10.018 Raja MAZ, Khan JA, Haroon T (2014) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks, particle swarm optimization and sequential quadratic programming. J Chem Inst Taiwan. doi:10.​1016/​j.​jtice.​2014.​10.​018
16.
go back to reference Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206–020209MathSciNetCrossRef Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206–020209MathSciNetCrossRef
17.
go back to reference Yazdi, HS, Reza P (2010) Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl Soft Comput 10.1:267–275 Yazdi, HS, Reza P (2010) Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl Soft Comput 10.1:267–275
18.
go back to reference Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol Oscillator. Int J Phys Sci 6(31):7247–7261. doi:10.5897/IJPS11.922 Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol Oscillator. Int J Phys Sci 6(31):7247–7261. doi:10.​5897/​IJPS11.​922
20.
go back to reference Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of Nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207MathSciNetCrossRef Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of Nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207MathSciNetCrossRef
21.
go back to reference Monterola Christopher, Saloma Caesar (2001) Solving the nonlinear Schrodinger equation with an unsupervised neural network. Opt Express 9(2):16CrossRef Monterola Christopher, Saloma Caesar (2001) Solving the nonlinear Schrodinger equation with an unsupervised neural network. Opt Express 9(2):16CrossRef
23.
go back to reference Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput Fluids 91:28–46MathSciNetCrossRef Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput Fluids 91:28–46MathSciNetCrossRef
27.
go back to reference Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s Problem. Chin Phys B 23(1):018903CrossRef Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s Problem. Chin Phys B 23(1):018903CrossRef
28.
go back to reference Raja MAZ, Ahmad SI, Samar r (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu Problem. Neural Comput Appl 23(7–8):2199–2210. doi:10.1007/s00521-012-1170-4 CrossRef Raja MAZ, Ahmad SI, Samar r (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu Problem. Neural Comput Appl 23(7–8):2199–2210. doi:10.​1007/​s00521-012-1170-4 CrossRef
29.
go back to reference Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. doi:10.1007/s00521-014-1641-x Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. doi:10.​1007/​s00521-014-1641-x
30.
go back to reference Raja MAZ, Ahmad S, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl. doi:10.1007/s00521-014-1664-3 Raja MAZ, Ahmad S, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl. doi:10.​1007/​s00521-014-1664-3
32.
go back to reference Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2014) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.1016/j.asoc.2014.10.009 CrossRef Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2014) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.​1016/​j.​asoc.​2014.​10.​009 CrossRef
33.
go back to reference Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811MATHMathSciNetCrossRef Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811MATHMathSciNetCrossRef
34.
go back to reference Raja MAZ, Khan JA, Qureshi IM (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7:11 Raja MAZ, Khan JA, Qureshi IM (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7:11
35.
go back to reference Raja MAZ, Khan JA, Qureshi IM (2010) Evolutionary computational intelligence in solving the fractional differential equations. Lecture Notes in Computer Science, vol 5990, part 1, Springer, ACIIDS Hue City, Vietnam, pp 231–240 Raja MAZ, Khan JA, Qureshi IM (2010) Evolutionary computational intelligence in solving the fractional differential equations. Lecture Notes in Computer Science, vol 5990, part 1, Springer, ACIIDS Hue City, Vietnam, pp 231–240
36.
go back to reference Raja MAZ, Khan JA, Qureshi IM (2010) Heuristic computational approach using swarm intelligence in solving fractional differential equations. GECCO (Companion) 2010:2023–2026 Raja MAZ, Khan JA, Qureshi IM (2010) Heuristic computational approach using swarm intelligence in solving fractional differential equations. GECCO (Companion) 2010:2023–2026
37.
go back to reference Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math Probl Eng 2011 Article ID 765075:01–18 Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math Probl Eng 2011 Article ID 765075:01–18
38.
go back to reference Raja MAZ, Khan JA, Qureshi IM (2010) A new Stochastic approach for solution of Riccati Differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250MATHMathSciNetCrossRef Raja MAZ, Khan JA, Qureshi IM (2010) A new Stochastic approach for solution of Riccati Differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250MATHMathSciNetCrossRef
39.
go back to reference Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2013) Numerical treatment of Painleve equation I using neural networks and stochastic solvers. In: Jordanov I, Jain LC (eds) Innovations in intelligent machines—3, SCI 442. Springer, Berlin, pp 103–117 Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2013) Numerical treatment of Painleve equation I using neural networks and stochastic solvers. In: Jordanov I, Jain LC (eds) Innovations in intelligent machines—3, SCI 442. Springer, Berlin, pp 103–117
40.
go back to reference Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2012) Solution of the Painlevé Equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci ID 721867:10 Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2012) Solution of the Painlevé Equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci ID 721867:10
41.
go back to reference Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MATHMathSciNetCrossRef Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MATHMathSciNetCrossRef
42.
go back to reference Aarts LP, Veer PVD (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271MATHCrossRef Aarts LP, Veer PVD (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271MATHCrossRef
43.
go back to reference Rarisi DR et al (2003) Solving differential equations with unsupervised neural networks. J Chem Eng Process 42:715–721CrossRef Rarisi DR et al (2003) Solving differential equations with unsupervised neural networks. J Chem Eng Process 42:715–721CrossRef
44.
go back to reference Nocedal J, Wright SJ (1999) Numerical optimization, Springer Series in Operations Research. Springer, Berlin Nocedal J, Wright SJ (1999) Numerical optimization, Springer Series in Operations Research. Springer, Berlin
45.
go back to reference Fletcher R (1987) Practical methods of optimization. Wiley, New York Fletcher R (1987) Practical methods of optimization. Wiley, New York
46.
go back to reference Schittkowski K (1985) NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann Oper Res 5:485–500MathSciNetCrossRef Schittkowski K (1985) NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann Oper Res 5:485–500MathSciNetCrossRef
Metadata
Title
Comparison of three unsupervised neural network models for first Painlevé Transcendent
Authors
Muhammad Asif Zahoor Raja
Junaid Ali Khan
Syed Muslim Shah
Raza Samar
Djilali Behloul
Publication date
01-07-2015
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2015
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1774-y

Other articles of this Issue 5/2015

Neural Computing and Applications 5/2015 Go to the issue

Premium Partner