Skip to main content
Top
Published in: Cellulose 3/2017

07-01-2017 | Original Paper

Complete nanofibrillation of cellulose prepared by phosphorylation

Authors: Yuichi Noguchi, Ikue Homma, Yusuke Matsubara

Published in: Cellulose | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we prepared phosphorylated pulp with a phosphorous content of 1.23 mmol/g by adding an aqueous solution of NH4H2PO4 and urea to softwood pulp sheets followed by drying and curing with hot air and obtained cellulose nanofibers (CNFs) with a uniform width of 3–4 nm in approximately 100% gravimetric yield by high-pressure homogenization of the phosphorylated pulp slurry. After phosphorylation, no significant decrease in the pulp recovery ratio was observed, and the viscosity-average degree of polymerization of phosphorylated pulp was almost equal to that of the original pulp. In addition, the crystal structure and crystallinity index were almost unchanged during phosphorylation. The obtained phosphorylated CNF dispersion was highly transparent, and the maximum total light transmittance was nearly 100% when the CNF content was 0.2 wt%. The maximum viscosity of the CNF dispersions was nearly 10–100 times greater than that of conventional thickeners. Furthermore, we found that not only insufficient but also excessive phosphorylation negatively affected the gravimetric yield, transparency and viscosity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464CrossRef Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464CrossRef
go back to reference Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E. Kreiger Publishing Co., Humington, pp 423–424 Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E. Kreiger Publishing Co., Humington, pp 423–424
go back to reference Coppick S, Hall WP (1947) Flameproofing textile. In: Little RW (ed) ACS Monograph 104. Reinhold Publishing Corp, New York, pp 179–190 Coppick S, Hall WP (1947) Flameproofing textile. In: Little RW (ed) ACS Monograph 104. Reinhold Publishing Corp, New York, pp 179–190
go back to reference Csiszar E, Kalic P, Kobol A, Ferreira EP (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480CrossRef Csiszar E, Kalic P, Kobol A, Ferreira EP (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480CrossRef
go back to reference Davis FV, Findlay J, Rogers E (1949) The urea-phosphoric acid method of flameproofing textiles. J Text Inst Trans 40:839–854CrossRef Davis FV, Findlay J, Rogers E (1949) The urea-phosphoric acid method of flameproofing textiles. J Text Inst Trans 40:839–854CrossRef
go back to reference De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787CrossRef De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787CrossRef
go back to reference Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef
go back to reference Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230CrossRef Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230CrossRef
go back to reference Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef
go back to reference Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29:176–184CrossRef Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29:176–184CrossRef
go back to reference Furuhata T, Seki N, Arai M (2011) Decomposition behavior of urea in high temperature atmosphere. Trans Jpn Soc Mech Eng Ser B 77:1858–1867CrossRef Furuhata T, Seki N, Arai M (2011) Decomposition behavior of urea in high temperature atmosphere. Trans Jpn Soc Mech Eng Ser B 77:1858–1867CrossRef
go back to reference Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16:3399–3410CrossRef Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16:3399–3410CrossRef
go back to reference Groebe F (1937) Electrical insulation and method of making the same. US patent 2089697 Groebe F (1937) Electrical insulation and method of making the same. US patent 2089697
go back to reference Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRef Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRef
go back to reference Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRef Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRef
go back to reference Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRef Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRef
go back to reference Iwamoto S, Endo T (2015) 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83CrossRef Iwamoto S, Endo T (2015) 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83CrossRef
go back to reference Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
go back to reference Katsuura K (1957) Studies on the cellulose phosphate (part II) thermal stability of cellulose phosphate. Sen’i Gakkaishi 13:28–30CrossRef Katsuura K (1957) Studies on the cellulose phosphate (part II) thermal stability of cellulose phosphate. Sen’i Gakkaishi 13:28–30CrossRef
go back to reference Katsuura K, Mizuno T (1966) Flameproofing of cotton fabrics with urea and phosphoric acid in organic solvent. Sen’i Gakkaishi 22:510–514CrossRef Katsuura K, Mizuno T (1966) Flameproofing of cotton fabrics with urea and phosphoric acid in organic solvent. Sen’i Gakkaishi 22:510–514CrossRef
go back to reference Katsuura K, Nonaka S (1957) Studies on the cellulose phosphate (part I) preparation of cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 13:24–28CrossRef Katsuura K, Nonaka S (1957) Studies on the cellulose phosphate (part I) preparation of cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 13:24–28CrossRef
go back to reference Katsuura K, Mizuno T, Kimoto H, Ito J (1963) Studies on cellulose phosphate part III. Preparation of soluble cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 19:472–476CrossRef Katsuura K, Mizuno T, Kimoto H, Ito J (1963) Studies on cellulose phosphate part III. Preparation of soluble cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 19:472–476CrossRef
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Mucalo MR, Yokogawa Y, Toriyama M, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K (1995) Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med 6:597–605CrossRef Mucalo MR, Yokogawa Y, Toriyama M, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K (1995) Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med 6:597–605CrossRef
go back to reference Nada AMA, Eid MA, El Bahnasawy RM, Khalifa MN (2002) Preparation and characterization of cation exchangers from agricultural residues. J Appl Polym Sci 85:792–800CrossRef Nada AMA, Eid MA, El Bahnasawy RM, Khalifa MN (2002) Preparation and characterization of cation exchangers from agricultural residues. J Appl Polym Sci 85:792–800CrossRef
go back to reference Nuessle AC, Ford FM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26:32–39CrossRef Nuessle AC, Ford FM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26:32–39CrossRef
go back to reference Reid JD, Mazzeno LW (1949) Preparation and properties of cellulose phosphates. Ind Eng Chem 41:2828–2831CrossRef Reid JD, Mazzeno LW (1949) Preparation and properties of cellulose phosphates. Ind Eng Chem 41:2828–2831CrossRef
go back to reference Reid JD, Mazzeno LW, Buras EM (1949) Composition of two types of cellulose phosphates. Ind Eng Chem 41:2831–2834CrossRef Reid JD, Mazzeno LW, Buras EM (1949) Composition of two types of cellulose phosphates. Ind Eng Chem 41:2831–2834CrossRef
go back to reference Rockstein M, Herron P (1951) Colorimetric determination of inorganic phosphate in microgram quantities. Anal Chem 23:1500–1501CrossRef Rockstein M, Herron P (1951) Colorimetric determination of inorganic phosphate in microgram quantities. Anal Chem 23:1500–1501CrossRef
go back to reference Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258CrossRef Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
go back to reference Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef
go back to reference Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
go back to reference Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef
go back to reference Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRef Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRef
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Smith DK, Bampton RF, Alexander W (1963) Use of new solvents for evaluating chemical cellulose for the viscose process. Ind Eng Chem Process Des Dev 2:57–62CrossRef Smith DK, Bampton RF, Alexander W (1963) Use of new solvents for evaluating chemical cellulose for the viscose process. Ind Eng Chem Process Des Dev 2:57–62CrossRef
go back to reference Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
go back to reference Suflet DM, Chitanu GC, Popa V (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249CrossRef Suflet DM, Chitanu GC, Popa V (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827
go back to reference Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
go back to reference Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19:1821–1836CrossRef Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19:1821–1836CrossRef
go back to reference Zeronian SH, Adams S, Alger K, Lipska AE (1980) Phosphorylation of cellulose: effect of the reactivity of the starting polymer on the properties of the phosphorylated product. J Appl Polym Sci 25:519–528CrossRef Zeronian SH, Adams S, Alger K, Lipska AE (1980) Phosphorylation of cellulose: effect of the reactivity of the starting polymer on the properties of the phosphorylated product. J Appl Polym Sci 25:519–528CrossRef
Metadata
Title
Complete nanofibrillation of cellulose prepared by phosphorylation
Authors
Yuichi Noguchi
Ikue Homma
Yusuke Matsubara
Publication date
07-01-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1191-3

Other articles of this Issue 3/2017

Cellulose 3/2017 Go to the issue