Skip to main content
Erschienen in: Cellulose 6/2011

01.12.2011

Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes

verfasst von: T. T. T. Ho, T. Zimmermann, R. Hauert, W. Caseri

Erschienen in: Cellulose | Ausgabe 6/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oat straw cellulose pulp was cationized in an etherification reaction with chlorocholine chloride. The cationized cellulose pulp was then mechanically disintegrated in two process steps to obtain trimethylammonium-modified nanofibrillated cellulose (TMA-NFC). The materials thus obtained were analyzed by elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and other techniques. A higher nitrogen content of TMA-NFC samples was found by XPS analysis than by elemental analysis, which indicates that the modification occurred mainly on the surface of cellulose fibrils. XPS also confirmed the existence of ammonium groups in the samples. SEM provided images of very fine network structures of TMA-NFC, which affirmed the positive effect of ionic charge on mechanical disintegration process. According to XRD and SEM results, no severe degradation of the cellulose occurred, even at high reaction temperatures. Because of the different properties of the cationic NFC compared to negatively charged native cellulose fibers, TMA-NFC may find broad applications in technical areas, for instance in combination with anionic species, such as fillers or dyes. Indeed, TMA-NFC seems to improve the distribution of clay fillers in NFC matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8(9):784–786CrossRef Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8(9):784–786CrossRef
Zurück zum Zitat Alince B, Petlicki J, van de Ven TGM (1991) Kinetics of colloidal particle deposition on pulp fibers 1. Deposition of clay on fibers of opposite charge. Colloids Surf 59:265–277CrossRef Alince B, Petlicki J, van de Ven TGM (1991) Kinetics of colloidal particle deposition on pulp fibers 1. Deposition of clay on fibers of opposite charge. Colloids Surf 59:265–277CrossRef
Zurück zum Zitat Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wagberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685. doi:10.1021/la900323n CrossRef Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wagberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685. doi:10.​1021/​la900323n CrossRef
Zurück zum Zitat Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.1021/bm0493685 CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.​1021/​bm0493685 CrossRef
Zurück zum Zitat Beamson G, Briggs D (1992) High resolution XPS of organic polymers the Scienta ESCA300 database. Wiley, Chichester Beamson G, Briggs D (1992) High resolution XPS of organic polymers the Scienta ESCA300 database. Wiley, Chichester
Zurück zum Zitat Blasutto M, Delben F, Milost R, Painter TJ (1995) Novel cellulosic ethers with low degrees of substitution—I. Preparation and analysis of long-chain alkyl ethers. Carbohydr Polym 27(1):53–62CrossRef Blasutto M, Delben F, Milost R, Painter TJ (1995) Novel cellulosic ethers with low degrees of substitution—I. Preparation and analysis of long-chain alkyl ethers. Carbohydr Polym 27(1):53–62CrossRef
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef
Zurück zum Zitat Boluk Y (2005) Acid–base interactions and swelling of cellulose fibers in organic liquids. Cellulose 12(6):577–593CrossRef Boluk Y (2005) Acid–base interactions and swelling of cellulose fibers in organic liquids. Cellulose 12(6):577–593CrossRef
Zurück zum Zitat Buschlediller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45(6):967–979CrossRef Buschlediller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45(6):967–979CrossRef
Zurück zum Zitat Cai X, Riedl B, Ait-Kadi A (2003) Effect of surface-grafted ionic groups on the performance of cellulose-fiber-reinforced thermoplastic composites. J Polym Sci B Polym Phys 41(17):2022–2032CrossRef Cai X, Riedl B, Ait-Kadi A (2003) Effect of surface-grafted ionic groups on the performance of cellulose-fiber-reinforced thermoplastic composites. J Polym Sci B Polym Phys 41(17):2022–2032CrossRef
Zurück zum Zitat Cheng Q, Wang S, Rials T, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602. doi:10.1007/s10570-007-9141-0 CrossRef Cheng Q, Wang S, Rials T, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602. doi:10.​1007/​s10570-007-9141-0 CrossRef
Zurück zum Zitat Daly S, Jachowicz J, Bianchini R (2010) Methods and kits containing charged compounds imparting benefits to hair and cosmetic products. WO10005906 Daly S, Jachowicz J, Bianchini R (2010) Methods and kits containing charged compounds imparting benefits to hair and cosmetic products. WO10005906
Zurück zum Zitat de la Orden MU, González Sánchez C, González Quesada M, Martínez Urreaga J (2007) Novel polypropylene-cellulose composites using polyethylenimine as coupling agent. Compos Part A Appl Sci Manuf 38(9):2005–2012CrossRef de la Orden MU, González Sánchez C, González Quesada M, Martínez Urreaga J (2007) Novel polypropylene-cellulose composites using polyethylenimine as coupling agent. Compos Part A Appl Sci Manuf 38(9):2005–2012CrossRef
Zurück zum Zitat Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
Zurück zum Zitat Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30CrossRef Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30CrossRef
Zurück zum Zitat Fendler A, Villanueva M, Gimenez E, Lagarón J (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14(5):427–438CrossRef Fendler A, Villanueva M, Gimenez E, Lagarón J (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14(5):427–438CrossRef
Zurück zum Zitat Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surf A Physicochem Eng Asp 260(1–3):101–108CrossRef Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surf A Physicochem Eng Asp 260(1–3):101–108CrossRef
Zurück zum Zitat Gruber E, Gruber R (1981) Viscosimetrical determination of the degree of polymerization of cellulose. Papier 35(4):133–141 Gruber E, Gruber R (1981) Viscosimetrical determination of the degree of polymerization of cellulose. Papier 35(4):133–141
Zurück zum Zitat Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244. doi:10.1039/b806789a CrossRef Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244. doi:10.​1039/​b806789a CrossRef
Zurück zum Zitat Henniges U, Kloser E, Patel A, Potthast A, Kosma P, Fischer M, Fischer K, Rosenau T (2007) Studies on DMSO-containing carbanilation mixtures: chemistry, oxidations and cellulose integrity. Cellulose 14(5):497–511CrossRef Henniges U, Kloser E, Patel A, Potthast A, Kosma P, Fischer M, Fischer K, Rosenau T (2007) Studies on DMSO-containing carbanilation mixtures: chemistry, oxidations and cellulose integrity. Cellulose 14(5):497–511CrossRef
Zurück zum Zitat Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys Mater Sci Process 81(6):1109–1112 Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys Mater Sci Process 81(6):1109–1112
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89(2):461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89(2):461–466CrossRef
Zurück zum Zitat Kaewprasit C, Hequet E, Abidi N, Gourlot JP (1998) Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. Methodology. J Cotton Sci 2:164–173 Kaewprasit C, Hequet E, Abidi N, Gourlot JP (1998) Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. Methodology. J Cotton Sci 2:164–173
Zurück zum Zitat Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) General considerations on structure and reactivity of cellulose: Section 2.2–2.2.3. In: Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 43–82. doi:10.1002/3527601929.ch2c Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) General considerations on structure and reactivity of cellulose: Section 2.2–2.2.3. In: Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 43–82. doi:10.​1002/​3527601929.​ch2c
Zurück zum Zitat Krainz K, Potthast A, Suess U, Dietz T, Nimmerfroh N, Rosenau T (2009) Effects of selected key chromophores on cellulose integrity upon bleaching. Holzforschung, vol 63. De Gruyter. doi:10.1515/hf.2009.118 Krainz K, Potthast A, Suess U, Dietz T, Nimmerfroh N, Rosenau T (2009) Effects of selected key chromophores on cellulose integrity upon bleaching. Holzforschung, vol 63. De Gruyter. doi:10.​1515/​hf.​2009.​118
Zurück zum Zitat Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. vol 105. Wiley Subscription Services, Inc., A Wiley Company. doi:10.1002/app.26580 Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. vol 105. Wiley Subscription Services, Inc., A Wiley Company. doi:10.​1002/​app.​26580
Zurück zum Zitat Montazer M, Malek R, Rahimi A (2007) Salt free reactive dyeing of cationized cotton. Fibers Polym 8(6):608–612CrossRef Montazer M, Malek R, Rahimi A (2007) Salt free reactive dyeing of cationized cotton. Fibers Polym 8(6):608–612CrossRef
Zurück zum Zitat Montplaisir D, Daneault C, Chabot B (2008) Surface composition of grafted thermomechanical pulp through XPS measurement. BioResources 3(4):1118–1129 Montplaisir D, Daneault C, Chabot B (2008) Surface composition of grafted thermomechanical pulp through XPS measurement. BioResources 3(4):1118–1129
Zurück zum Zitat Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87(24):243110–243113 Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87(24):243110–243113
Zurück zum Zitat Peffly MM, Geary NW, Staudigel JA (2004) Personal care composition containing a cationic cellulose polymer and an anionic surfactant system. WO04064802 Peffly MM, Geary NW, Staudigel JA (2004) Personal care composition containing a cationic cellulose polymer and an anionic surfactant system. WO04064802
Zurück zum Zitat Roy D, Knapp JS, Guthrie JT, Perrier S (2007) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99. doi:10.1021/bm700849j CrossRef Roy D, Knapp JS, Guthrie JT, Perrier S (2007) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99. doi:10.​1021/​bm700849j CrossRef
Zurück zum Zitat Schwarzinger C, Pfeifer A, Schmidt H (2002) Determination of the nitrogen content of cationic cellulose fibers by analytical pyrolysis. Monatshefte für Chemie/Chemical Monthly 133(1):1–7CrossRef Schwarzinger C, Pfeifer A, Schmidt H (2002) Determination of the nitrogen content of cationic cellulose fibers by analytical pyrolysis. Monatshefte für Chemie/Chemical Monthly 133(1):1–7CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.1177/004051755902901003 CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.​1177/​0040517559029010​03 CrossRef
Zurück zum Zitat Shelden RA, Caseri WR, Suter UW (1993) Ion exchange on muscovite mica with ultrahigh specific surface area. J Colloid Interface Sci 157(2):318–327CrossRef Shelden RA, Caseri WR, Suter UW (1993) Ion exchange on muscovite mica with ultrahigh specific surface area. J Colloid Interface Sci 157(2):318–327CrossRef
Zurück zum Zitat Shlieout G, Arnold K, Müller G (2002) Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3(2):45–54. doi:10.1208/pt030211 CrossRef Shlieout G, Arnold K, Müller G (2002) Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3(2):45–54. doi:10.​1208/​pt030211 CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 0(0). doi:10.1021/bm801193d Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 0(0). doi:10.​1021/​bm801193d
Zurück zum Zitat Smith RG, Vanterpool A, Kulak HJ (1969) Dimethyl sulfoxide as a solvent in the Williamson ether synthesis. Can J Biochem Cell Biol 47(11):2015 Smith RG, Vanterpool A, Kulak HJ (1969) Dimethyl sulfoxide as a solvent in the Williamson ether synthesis. Can J Biochem Cell Biol 47(11):2015
Zurück zum Zitat Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95 Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95
Zurück zum Zitat Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45CrossRef Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45CrossRef
Zurück zum Zitat Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRef Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRef
Zurück zum Zitat Tanem BS, Kvien I, van Helvoort ATJ, Oksman K (2006) Morphology of cellulose and its nanocomposites. In: Cellulose nanocomposites. ACS Symposium Series. American Chemical Society, Washington, pp 48–62. doi:10.1021/bk-2006-0938.ch005 Tanem BS, Kvien I, van Helvoort ATJ, Oksman K (2006) Morphology of cellulose and its nanocomposites. In: Cellulose nanocomposites. ACS Symposium Series. American Chemical Society, Washington, pp 48–62. doi:10.​1021/​bk-2006-0938.​ch005
Zurück zum Zitat Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:10.1021/bm901186u CrossRef Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:10.​1021/​bm901186u CrossRef
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Symp 37:815–827
Zurück zum Zitat Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi:10.1021/la702481v CrossRef Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi:10.​1021/​la702481v CrossRef
Zurück zum Zitat Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef
Zurück zum Zitat Zimmermann T, Pöhler E, Schwaller P (2005) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7(12):1156–1161 Zimmermann T, Pöhler E, Schwaller P (2005) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7(12):1156–1161
Zurück zum Zitat Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093CrossRef Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093CrossRef
Metadaten
Titel
Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes
verfasst von
T. T. T. Ho
T. Zimmermann
R. Hauert
W. Caseri
Publikationsdatum
01.12.2011
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2011
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9591-2

Weitere Artikel der Ausgabe 6/2011

Cellulose 6/2011 Zur Ausgabe