Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2015

01-06-2015

Complex impedance spectroscopy of high-k HfO2 thin films in Al/HfO2/Si capacitor for gate oxide applications

Authors: Madhuchhanda Nath, Asim Roy

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dielectric responses of ultrathin (~6.65 nm) HfO2 films, in the form of Al/HfO2/Si capacitors were prepared by rf sputtering technique, has been studied in the wide frequency range as a function of deposition temperatures. Deposition temperatures were varied from room temperature (30 °C) to 500 °C. Thickness and the interfacial and surface roughness of heterostructures were extracted by fitting the specular X-ray reflectivity data. The impedance analysis combined with modulus spectroscopy was performed to get insight of the microscopic features like grain, grain boundary and film–electrode interfaces and their effects in the film properties. The films exhibited maximum frequency dispersion in both real and imaginary part of impedance at low frequency range. The frequency analysis of the modulus and impedance studies showed the distribution of the relaxation times due to the presence of grains and grain boundaries in the films. Impedance analysis revealed that the interfacial polarization caused by space charges in the film/electrode interfaces plays an important role in the dielectric behavior of the capacitor. In order to explain effectively that the impedance plots contain one or two arcs due to more than one relaxation contributions, the results are interpreted using the approach proposed by Abrantes (Z / vs. |Z // |/f representation). The dielectric loss (tan δ) curves exhibited the fact that there is possibility of existence of a Schottky barrier at the insulator semiconductor interface, which is due to traps distributed throughout the semiconductor-insulator interface and it is believed to be due to auto doping during deposition process. The ac conductivity, σ ac (ω), varies as σ ac (ω) =  n with n in the range 0.06–0.71.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, IEEE Trans. Device Mater. Reliab. 5, 5 (2005)CrossRef G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, IEEE Trans. Device Mater. Reliab. 5, 5 (2005)CrossRef
3.
go back to reference M.L. Green, E.P. Gusev, R. Degraeve, E.J. Garfunkel, Appl. Phys. Rev. 90, 2057 (2001)CrossRef M.L. Green, E.P. Gusev, R. Degraeve, E.J. Garfunkel, Appl. Phys. Rev. 90, 2057 (2001)CrossRef
5.
6.
go back to reference G. He, B. Deng, Z. Sun, X. Chen, Y. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 38, 235 (2013)CrossRef G. He, B. Deng, Z. Sun, X. Chen, Y. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 38, 235 (2013)CrossRef
8.
go back to reference E.P. Gusev Jr, C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003)CrossRef E.P. Gusev Jr, C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003)CrossRef
9.
go back to reference D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), 110 (2013)CrossRef D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), 110 (2013)CrossRef
11.
go back to reference D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), N110 (2013)CrossRef D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), N110 (2013)CrossRef
12.
13.
14.
go back to reference G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. 576, 67 (2005)CrossRef G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. 576, 67 (2005)CrossRef
15.
16.
go back to reference C.C. Lung, J.H. Horng, K.S. Chang-Liao, J.T. Jeng, H.Y. Tsai, Solid State Electron 54, 1197 (2010)CrossRef C.C. Lung, J.H. Horng, K.S. Chang-Liao, J.T. Jeng, H.Y. Tsai, Solid State Electron 54, 1197 (2010)CrossRef
21.
go back to reference N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev B 77, 14111 (2008)CrossRef N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev B 77, 14111 (2008)CrossRef
22.
23.
go back to reference G.Z. Liu, Can Wang, C.C. Wang, J. Qiu, M. He, J. Xing, K.J. Jin, H.B. Lu, Y.G. Zhen, Appl. Phys. Lett. 92, 122903 (2008)CrossRef G.Z. Liu, Can Wang, C.C. Wang, J. Qiu, M. He, J. Xing, K.J. Jin, H.B. Lu, Y.G. Zhen, Appl. Phys. Lett. 92, 122903 (2008)CrossRef
24.
go back to reference J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mater. Res. Bull. 35, 727 (2000)CrossRef J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mater. Res. Bull. 35, 727 (2000)CrossRef
25.
go back to reference B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem. 21, 1171 (2011)CrossRef B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem. 21, 1171 (2011)CrossRef
26.
go back to reference A.K. Jonscher, Dielectric Relaxation of Solids (Dielectrics Press, Chelsea, 1981) A.K. Jonscher, Dielectric Relaxation of Solids (Dielectrics Press, Chelsea, 1981)
27.
go back to reference V.V. Daniel, Dielectric Relaxation (Academic, London, 1967) V.V. Daniel, Dielectric Relaxation (Academic, London, 1967)
28.
go back to reference A. Tataroğlu, M. Yıldırım, H.M. Baran, Mater. Sci. Semicond. Process. 28, 89 (2014)CrossRef A. Tataroğlu, M. Yıldırım, H.M. Baran, Mater. Sci. Semicond. Process. 28, 89 (2014)CrossRef
29.
30.
go back to reference K. Prabakar, S.K. Narayandass, D. Mangalaraj, Mater. Chem. Phys. 78, 809 (2003)CrossRef K. Prabakar, S.K. Narayandass, D. Mangalaraj, Mater. Chem. Phys. 78, 809 (2003)CrossRef
33.
go back to reference C.K. Suman, J. Yun, S. Kim, D. Lee, C. Lee, Curr. Appl. Phys. 9, 978 (2009)CrossRef C.K. Suman, J. Yun, S. Kim, D. Lee, C. Lee, Curr. Appl. Phys. 9, 978 (2009)CrossRef
Metadata
Title
Complex impedance spectroscopy of high-k HfO2 thin films in Al/HfO2/Si capacitor for gate oxide applications
Authors
Madhuchhanda Nath
Asim Roy
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2862-1

Other articles of this Issue 6/2015

Journal of Materials Science: Materials in Electronics 6/2015 Go to the issue