Skip to main content
Top

2010 | OriginalPaper | Chapter

Composite Hydrogels for Scaffold Design, Tissue Engineering, and Prostheses

Authors : V. Guarino, A. Gloria, R. De Santis, L. Ambrosio

Published in: Biomedical Applications of Hydrogels Handbook

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogels have been successfully used in several biomedical applications, such as controlled drug release and micro-patterning. More recently, the ability to engineer composite hydrogels has generated new opportunities in addressing challenges in tissue engineering as well as in tissue function restoration via prostheses. Indeed, the knowledge of biocompatible materials and preparation technologies may be efficaciously used in synthesizing biocompatible hydrogels to develop state-of-the-art hydrogel-based devices for tissue regeneration and reconstruction. Important details with respect to the design of the materials adopted and with respect to specific tissues, such as tendons and ligaments, intervertebral discs, bone, menisci, and cartilage will be discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565–576CrossRef Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565–576CrossRef
2.
go back to reference Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef
3.
go back to reference Woerly S (1997) Porous hydrogels for neural tissue engineering. Porous Mater Tissue Eng 250:53–68 Woerly S (1997) Porous hydrogels for neural tissue engineering. Porous Mater Tissue Eng 250:53–68
4.
go back to reference Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10010CrossRef Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10010CrossRef
5.
go back to reference Shu XZ, Ahmad S, Liu YC et al (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79A:902CrossRef Shu XZ, Ahmad S, Liu YC et al (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79A:902CrossRef
6.
go back to reference Matthew HW, Salley SO, Peterson WD et al (1993) Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519CrossRef Matthew HW, Salley SO, Peterson WD et al (1993) Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519CrossRef
7.
go back to reference Kopecek J, Yang J (2007) Hydrogels as smart materials. Polym Int 56:1078–1098CrossRef Kopecek J, Yang J (2007) Hydrogels as smart materials. Polym Int 56:1078–1098CrossRef
8.
go back to reference Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127CrossRef Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127CrossRef
9.
10.
go back to reference Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRef Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRef
11.
go back to reference Alblas FNE, De Wijn JR J et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRef Alblas FNE, De Wijn JR J et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRef
12.
go back to reference Ambrosio L, Netti PA, Iannace S et al (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254CrossRef Ambrosio L, Netti PA, Iannace S et al (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254CrossRef
13.
go back to reference Netti PA, Shelton JC, Revell PA et al (1993) Hydrogels as an interface between bone and an implant. Biomaterials 14(14):1098–1104CrossRef Netti PA, Shelton JC, Revell PA et al (1993) Hydrogels as an interface between bone and an implant. Biomaterials 14(14):1098–1104CrossRef
14.
go back to reference Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York
15.
go back to reference Netti PA, D’Amore A, Ronca D et al (1996) Structure-mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530CrossRef Netti PA, D’Amore A, Ronca D et al (1996) Structure-mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530CrossRef
16.
go back to reference De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871CrossRef De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871CrossRef
17.
go back to reference Iannace S, Sabatini G, Ambrosio L et al (1995) Mechanical behaviour of composite artificial tendons and ligaments. Biomaterials 16(9):675–680CrossRef Iannace S, Sabatini G, Ambrosio L et al (1995) Mechanical behaviour of composite artificial tendons and ligaments. Biomaterials 16(9):675–680CrossRef
18.
go back to reference Causa F, Sarracino F, De Santis R et al (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30 Causa F, Sarracino F, De Santis R et al (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30
19.
go back to reference Noth U, Schupp K, Heymer A et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455CrossRef Noth U, Schupp K, Heymer A et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455CrossRef
20.
go back to reference Calve S, Dennis R, Kosnik P et al (2004) Engineering of functional tendon. Tissue Eng 10(5/6):755–761CrossRef Calve S, Dennis R, Kosnik P et al (2004) Engineering of functional tendon. Tissue Eng 10(5/6):755–761CrossRef
21.
go back to reference Gentleman E, Livesay G, Dee K et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736CrossRef Gentleman E, Livesay G, Dee K et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736CrossRef
22.
go back to reference Ouyang H, Goh J, Thambyah A et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 9(3):431–439CrossRef Ouyang H, Goh J, Thambyah A et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 9(3):431–439CrossRef
23.
go back to reference Cristino S, Grassi F, Toneguzzi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11 based prototype ligament scaffold. J Biomed Mater Res 73A(3):275–283CrossRef Cristino S, Grassi F, Toneguzzi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11 based prototype ligament scaffold. J Biomed Mater Res 73A(3):275–283CrossRef
24.
go back to reference Funakoshi T, Majima T, Iwasaki N et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibres as a scaffold in ligament tissue engineering. J Biomed Mater Res 74A(3):338–346CrossRef Funakoshi T, Majima T, Iwasaki N et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibres as a scaffold in ligament tissue engineering. J Biomed Mater Res 74A(3):338–346CrossRef
25.
go back to reference McPherson GK, Mendenhall HV, Gibbons DF et al (1985) Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin Orthop 196:186–195 McPherson GK, Mendenhall HV, Gibbons DF et al (1985) Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin Orthop 196:186–195
26.
go back to reference Olson EJ, Kang JD, Fu FH et al (1988) The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am J Sports Med 16:558–570CrossRef Olson EJ, Kang JD, Fu FH et al (1988) The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am J Sports Med 16:558–570CrossRef
27.
go back to reference Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng 212(Part H):93–99 Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng 212(Part H):93–99
28.
go back to reference Arnoczky SP, Matyas JR, Buckwalter JA et al (1963) Anatomy of the anterior cruciate ligament. In: Jackson DW (ed) The anterior cruciate ligament. Raven Press, New York, pp 5–23 Arnoczky SP, Matyas JR, Buckwalter JA et al (1963) Anatomy of the anterior cruciate ligament. In: Jackson DW (ed) The anterior cruciate ligament. Raven Press, New York, pp 5–23
29.
go back to reference Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Exp Rev Med Dev 4(3):406–418CrossRef Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Exp Rev Med Dev 4(3):406–418CrossRef
30.
go back to reference Ge Z, Yang F, Goh JCH et al (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res 77A:639–652CrossRef Ge Z, Yang F, Goh JCH et al (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res 77A:639–652CrossRef
31.
go back to reference Gershon B, Cohn D, Marom G (1990) Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses. Biomaterials 11:548–552CrossRef Gershon B, Cohn D, Marom G (1990) Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses. Biomaterials 11:548–552CrossRef
32.
go back to reference Cassidy JJ, Hiltner A, Baer A (1990) The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J Mater Sci Mat Med 1:69–80CrossRef Cassidy JJ, Hiltner A, Baer A (1990) The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J Mater Sci Mat Med 1:69–80CrossRef
33.
go back to reference Hukins DWL (2005) Tissue engineering: a live disc. Nat Mater 4(12):881–882CrossRef Hukins DWL (2005) Tissue engineering: a live disc. Nat Mater 4(12):881–882CrossRef
34.
go back to reference Bao Q, McCullen GM, Higham PA et al (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167CrossRef Bao Q, McCullen GM, Higham PA et al (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167CrossRef
35.
go back to reference Cassidy JJ, Hiltner A, Baer A (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88CrossRef Cassidy JJ, Hiltner A, Baer A (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88CrossRef
36.
go back to reference Shikinami Y, Kotani Y, Cunningham BW et al (2004) A biomimetic artificial disc with improved mechanical properties compared to biological intervertebral discs. Adv Funct Mater 14:1039–1046CrossRef Shikinami Y, Kotani Y, Cunningham BW et al (2004) A biomimetic artificial disc with improved mechanical properties compared to biological intervertebral discs. Adv Funct Mater 14:1039–1046CrossRef
37.
go back to reference Gloria A, Causa F, De Santis R et al (2007) Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med 18:2159–2165CrossRef Gloria A, Causa F, De Santis R et al (2007) Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med 18:2159–2165CrossRef
38.
go back to reference Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef
39.
go back to reference Davis PA, Huang SJ, Ambrosio L, Ronca D, Nicolais L (1991) A biodegradable composite artificial tendon. J Mater Sci Mater Med 3:359–364CrossRef Davis PA, Huang SJ, Ambrosio L, Ronca D, Nicolais L (1991) A biodegradable composite artificial tendon. J Mater Sci Mater Med 3:359–364CrossRef
40.
go back to reference Leach JB, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589CrossRef Leach JB, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589CrossRef
41.
go back to reference Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092CrossRef Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092CrossRef
42.
go back to reference Ciapetti G, Ambrosio L, Marletta G et al (2006) Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27:6150–6160CrossRef Ciapetti G, Ambrosio L, Marletta G et al (2006) Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27:6150–6160CrossRef
43.
go back to reference Savarino L, Baldini N, Greco M et al (2007) The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109CrossRef Savarino L, Baldini N, Greco M et al (2007) The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109CrossRef
44.
go back to reference Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330CrossRef Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330CrossRef
45.
go back to reference Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation e and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation e and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
46.
47.
go back to reference Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790CrossRef Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790CrossRef
48.
go back to reference Leong KF, Cheah CM, Chua CK (2003) Solid free-form fabrication of 3D scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378CrossRef Leong KF, Cheah CM, Chua CK (2003) Solid free-form fabrication of 3D scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378CrossRef
49.
go back to reference Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524CrossRef Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524CrossRef
50.
go back to reference Guarino V, Causa F, Salerno A et al (2008) Design and manufacture of microporous polymeric materials with hierarchical complex structure for biomedical application. Mater Sci Technol 24(9):1111–1117CrossRef Guarino V, Causa F, Salerno A et al (2008) Design and manufacture of microporous polymeric materials with hierarchical complex structure for biomedical application. Mater Sci Technol 24(9):1111–1117CrossRef
51.
go back to reference Lum L, Elisseeff J (2003) Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferrettivol P (eds) Topics in tissue engineering, vol 1, pp1–25, www.tissue-engineering-oc.com [ebook] Lum L, Elisseeff J (2003) Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferrettivol P (eds) Topics in tissue engineering, vol 1, pp1–25, www.​tissue-engineering-oc.​com [ebook]
52.
go back to reference Elisseeff J, Puleo C, Yang F et al (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161CrossRef Elisseeff J, Puleo C, Yang F et al (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161CrossRef
53.
go back to reference Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014CrossRef Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014CrossRef
54.
go back to reference Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099CrossRef Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099CrossRef
55.
go back to reference Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101:69CrossRef Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101:69CrossRef
56.
go back to reference Roberts A, Wyslouzil BE, Bonassar L (2005) Aerosol delivery of mammalian cells for tissue engineering. Biotechnol Bioeng 91:801CrossRef Roberts A, Wyslouzil BE, Bonassar L (2005) Aerosol delivery of mammalian cells for tissue engineering. Biotechnol Bioeng 91:801CrossRef
57.
go back to reference Nahmias Y, Arneja A, Tower TT et al (2005) Cell patterning on biological gels via cell spraying through a mask. Tissue Eng 11:701CrossRef Nahmias Y, Arneja A, Tower TT et al (2005) Cell patterning on biological gels via cell spraying through a mask. Tissue Eng 11:701CrossRef
58.
go back to reference Spitzer RS, Perka C, Lindenhayn K et al (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J Biomed Mater Res 59:690CrossRef Spitzer RS, Perka C, Lindenhayn K et al (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J Biomed Mater Res 59:690CrossRef
59.
go back to reference Xu XL, Lou J, Tang T et al (2005) Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater 75:289 Xu XL, Lou J, Tang T et al (2005) Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater 75:289
60.
go back to reference Guarino V, Causa F, Netti PA et al (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 86B:548CrossRef Guarino V, Causa F, Netti PA et al (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 86B:548CrossRef
61.
go back to reference Santavirta S, Konttinen YT, Saito T et al (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg Br 72:597–600 Santavirta S, Konttinen YT, Saito T et al (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg Br 72:597–600
62.
go back to reference Turner NJ, Kielty CM, Walker MG et al (2004) A novel hyaluronan-based biomaterial (HYAFF 11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25:5955–5964CrossRef Turner NJ, Kielty CM, Walker MG et al (2004) A novel hyaluronan-based biomaterial (HYAFF 11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25:5955–5964CrossRef
63.
go back to reference Grigolo B, Roseti L, Fiorini M et al (2001) Transplantation of chondrocytes seeded on a hyaluronan derivative (HYAFF 11) into cartilage defects in rabbits. Biomaterials 22:2417–2424CrossRef Grigolo B, Roseti L, Fiorini M et al (2001) Transplantation of chondrocytes seeded on a hyaluronan derivative (HYAFF 11) into cartilage defects in rabbits. Biomaterials 22:2417–2424CrossRef
64.
go back to reference Solchaga LA, Dennis JE, Goldberg VM et al (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213CrossRef Solchaga LA, Dennis JE, Goldberg VM et al (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213CrossRef
65.
go back to reference Solchaga LA, Gao J, Dennis JE et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347CrossRef Solchaga LA, Gao J, Dennis JE et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347CrossRef
66.
go back to reference Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230CrossRef Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230CrossRef
67.
go back to reference Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
68.
go back to reference Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14:1056–1065CrossRef Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14:1056–1065CrossRef
69.
go back to reference Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067–1080CrossRef Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067–1080CrossRef
70.
go back to reference Veth RP, Jansen HW, Leenslag JW et al (1986) Experimental meniscal lesions reconstructed with a carbon fibre-polyurethane-poly(l-lactide) graft. Clin Orthop Relat Res 202:286–293 Veth RP, Jansen HW, Leenslag JW et al (1986) Experimental meniscal lesions reconstructed with a carbon fibre-polyurethane-poly(l-lactide) graft. Clin Orthop Relat Res 202:286–293
71.
go back to reference Cook JL, Fox DB, Malaviya P et al (2005) Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32–42CrossRef Cook JL, Fox DB, Malaviya P et al (2005) Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32–42CrossRef
72.
go back to reference Tienen TG, Heijkants RG, De Groot JH et al (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76:389–396 Tienen TG, Heijkants RG, De Groot JH et al (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76:389–396
73.
go back to reference Walsh CJ, Goodman D, Caplan AI et al (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5:327–337CrossRef Walsh CJ, Goodman D, Caplan AI et al (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5:327–337CrossRef
74.
go back to reference Martinek V, Ueblacker P, Braun K et al (2007) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126:228–234CrossRef Martinek V, Ueblacker P, Braun K et al (2007) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126:228–234CrossRef
75.
go back to reference Weinand C, Peretti GM, Adams SBJ et al (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34:1779–1789CrossRef Weinand C, Peretti GM, Adams SBJ et al (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34:1779–1789CrossRef
76.
go back to reference Puelacher WC, Mooney D, Langer R et al (1994) Design of nasoseptal cartilage replacements synthesised from biodegradable polymers and chondrocytes. Biomaterials 15:774–778CrossRef Puelacher WC, Mooney D, Langer R et al (1994) Design of nasoseptal cartilage replacements synthesised from biodegradable polymers and chondrocytes. Biomaterials 15:774–778CrossRef
77.
go back to reference Buschmann MD, Gluzband YA, Grodzinsky AJ et al (1991) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose gel culture. J Cell Sci 108:1497–1508 Buschmann MD, Gluzband YA, Grodzinsky AJ et al (1991) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose gel culture. J Cell Sci 108:1497–1508
78.
go back to reference Butnariu-Ephrat M, Robinson D, Mendes DG et al (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243CrossRef Butnariu-Ephrat M, Robinson D, Mendes DG et al (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243CrossRef
79.
go back to reference Homming GN, Buma P, Koot HWJ et al (1993) Chondrocyte behaviour in fibrin glue in vitro. Acta Orthop Scand 64:441–445CrossRef Homming GN, Buma P, Koot HWJ et al (1993) Chondrocyte behaviour in fibrin glue in vitro. Acta Orthop Scand 64:441–445CrossRef
80.
go back to reference Wakitani S, Kimura T, Hirooka A et al (1989) Repair of articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 71B:74–80 Wakitani S, Kimura T, Hirooka A et al (1989) Repair of articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 71B:74–80
81.
go back to reference Grandolfo P, D’andrea P, Paoletti M et al (1993) Culture and differentiation of chondrocytes entrapped in alginate beads. Calcif Tissue Int 52:42–48CrossRef Grandolfo P, D’andrea P, Paoletti M et al (1993) Culture and differentiation of chondrocytes entrapped in alginate beads. Calcif Tissue Int 52:42–48CrossRef
82.
go back to reference Lima EG, Mauck RL, Han SH et al (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590 Lima EG, Mauck RL, Han SH et al (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590
83.
go back to reference Shimko DA, Shimko VF, Sander EA et al (2005) Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 73(2):315–324 Shimko DA, Shimko VF, Sander EA et al (2005) Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 73(2):315–324
84.
go back to reference Mow V, Holmes M, Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394CrossRef Mow V, Holmes M, Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394CrossRef
85.
go back to reference Sander EA, Nauman EA (2003) Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng 31(1–2):1–26CrossRef Sander EA, Nauman EA (2003) Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng 31(1–2):1–26CrossRef
86.
go back to reference Hui PW, Leung PC, Sher A (1996) Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing. J Biomech 29(1):123–132CrossRef Hui PW, Leung PC, Sher A (1996) Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing. J Biomech 29(1):123–132CrossRef
87.
go back to reference Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46:4676–4685CrossRef Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46:4676–4685CrossRef
88.
go back to reference Ulbrich K, Strohalm J, Kopeček J (1982) Polymers containing enzymatically degradable bonds. 6. Hydrophilic gels cleavable by chymotrypsin. Biomaterials 3:150–154CrossRef Ulbrich K, Strohalm J, Kopeček J (1982) Polymers containing enzymatically degradable bonds. 6. Hydrophilic gels cleavable by chymotrypsin. Biomaterials 3:150–154CrossRef
89.
go back to reference Wang C, Kopeček J, Stewart RJ (2001) Hybrid hydrogels crosslinked by genetically engineered coiled-coil block proteins. Biomacromolecules 2:912–920CrossRef Wang C, Kopeček J, Stewart RJ (2001) Hybrid hydrogels crosslinked by genetically engineered coiled-coil block proteins. Biomacromolecules 2:912–920CrossRef
90.
go back to reference Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels Networks 4:111–127CrossRef Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels Networks 4:111–127CrossRef
91.
go back to reference De Jong SJ, De Smedt SC, Wahls MWC, Demeester J (2000) Kettenes-van den Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRef De Jong SJ, De Smedt SC, Wahls MWC, Demeester J (2000) Kettenes-van den Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRef
92.
go back to reference Miyata T, Asami T, Uragami T (1999) A reversibly antigen-responsive hydrogels. Nature 399:766–769CrossRef Miyata T, Asami T, Uragami T (1999) A reversibly antigen-responsive hydrogels. Nature 399:766–769CrossRef
93.
go back to reference Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929CrossRef Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929CrossRef
Metadata
Title
Composite Hydrogels for Scaffold Design, Tissue Engineering, and Prostheses
Authors
V. Guarino
A. Gloria
R. De Santis
L. Ambrosio
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-5919-5_12

Premium Partner