Skip to main content
Top
Published in: Strength of Materials 1/2019

29-03-2019

Compression Behavior of Biodegradable Thermoplastic Plasticizer-Containing Composites

Authors: A. F. Guo, J. F. Li, F. Y. Li, J. Xu, C. W. Zhang, S. Chen

Published in: Strength of Materials | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoplastic starch-based composites generate worldwide interest as they are based on green raw materials and undergo complete degradation. The composites were first fabricated from starch and sisal fibers as the major materials via the forming process. The effect of starches with different contents of single- and multicomponent plasticizers on the cushioning properties of the composites was studied. An increase in plasticizer contents within a certain range is shown to enhance materials resistance to pressure and its cushioning performance. With the multicomponent plasticizer content of 15%, the resistance to pressure for four types of composites prepared at different weight ratios of formamide and urea were of the order of 2:1 > 1:1 > 1:2, and that of the four types of composites fabricated at different weight ratios of glycerol and ethylene glycol were of the order of 1:2 > 2:1 > 1:1. Multicomponent plasticizer-containing starch-based composites are shown to be irregular elastomers and the stress-strain relation to be first defined by a hyperbolic tangent curve function and then by the tangent one.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. W. Hu, X. H. Yu, Q. Hu, et al., “Methyl orange removal by a novel PEI-AuNPs-hemin nanocomposite,” J. Environ. Sci., 53, 278–283 (2017).CrossRef W. W. Hu, X. H. Yu, Q. Hu, et al., “Methyl orange removal by a novel PEI-AuNPs-hemin nanocomposite,” J. Environ. Sci., 53, 278–283 (2017).CrossRef
2.
go back to reference C. Y. Sun, Q. H. Xu, Y. Xie, et al., “High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties,” J. Alloy. Compd., 723, 333–344 (2017).CrossRef C. Y. Sun, Q. H. Xu, Y. Xie, et al., “High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties,” J. Alloy. Compd., 723, 333–344 (2017).CrossRef
3.
go back to reference Q. L. Yue, Y. N. Hou, S. Z. Yue, et al., “Construction of an off-on fluorescence system based on carbon dots for trace pyrophosphate sensing,” J. Fluoresc., 25, 585–594 (2015).CrossRef Q. L. Yue, Y. N. Hou, S. Z. Yue, et al., “Construction of an off-on fluorescence system based on carbon dots for trace pyrophosphate sensing,” J. Fluoresc., 25, 585–594 (2015).CrossRef
4.
go back to reference Q. L. Yue, T. F. Shen, L. Wang, et al., “A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization,” Biosens. Bioelectron., 56, 231–236 (2014).CrossRef Q. L. Yue, T. F. Shen, L. Wang, et al., “A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization,” Biosens. Bioelectron., 56, 231–236 (2014).CrossRef
5.
go back to reference Z. F. Jia, H. Q. Li, Y. Zhao, et al., “Preparation and electrical properties of sintered copper powder compacts modified by polydopamine-derived carbon nanofilms,” J. Mater. Sci., 53, No. 9, 6562–6573 (2018).CrossRef Z. F. Jia, H. Q. Li, Y. Zhao, et al., “Preparation and electrical properties of sintered copper powder compacts modified by polydopamine-derived carbon nanofilms,” J. Mater. Sci., 53, No. 9, 6562–6573 (2018).CrossRef
6.
go back to reference C. H. Song, M. X. Li, H. Qi, et al., “Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting,” Bioresource Technol., 259, 1–9 (2018).CrossRef C. H. Song, M. X. Li, H. Qi, et al., “Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting,” Bioresource Technol., 259, 1–9 (2018).CrossRef
7.
go back to reference J. Gironès, E. F. X. Espinach, N. Pellicer, et al., “High-performance-tensile-strength alpha-grass reinforced starch-based fully biodegradable composites,” Bioresources, 8, No. 4, 6121–6135 (2013).CrossRef J. Gironès, E. F. X. Espinach, N. Pellicer, et al., “High-performance-tensile-strength alpha-grass reinforced starch-based fully biodegradable composites,” Bioresources, 8, No. 4, 6121–6135 (2013).CrossRef
8.
go back to reference J. L. Guimarães, F. Wypych, C. K. Saul, et al., “Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil,” Carbohyd. Polym., 80, No. 1, 130–138 (2010).CrossRef J. L. Guimarães, F. Wypych, C. K. Saul, et al., “Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil,” Carbohyd. Polym., 80, No. 1, 130–138 (2010).CrossRef
9.
go back to reference H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, “Green composites from sustainable cellulose nanofibrils: A review,” Carbohyd. Polym., 87, No. 2, 963–979 (2012).CrossRef H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, “Green composites from sustainable cellulose nanofibrils: A review,” Carbohyd. Polym., 87, No. 2, 963–979 (2012).CrossRef
10.
go back to reference S. Chen, Q. Ji, L. Q. Kong, et al., “The electrochromic properties of an alternative copolymer containing benzo[1,2-b:4,5-b’] dithiophene as the electron donor and benzoselenadiazole as the electron acceptor units,” Int. J. Electrochem. Sci., 12, No. 4, 3398–3416 (2017).CrossRef S. Chen, Q. Ji, L. Q. Kong, et al., “The electrochromic properties of an alternative copolymer containing benzo[1,2-b:4,5-b’] dithiophene as the electron donor and benzoselenadiazole as the electron acceptor units,” Int. J. Electrochem. Sci., 12, No. 4, 3398–3416 (2017).CrossRef
11.
go back to reference C. W. Zhang, F. Y. Li, J. F. Li, et al., “Research on rheological behavior of biobased composite slurry composed of sisal fiber and thermoplastic oxidized starch,” J. Biobased. Mater. Bio., 11, No. 2, 119–124 (2017).CrossRef C. W. Zhang, F. Y. Li, J. F. Li, et al., “Research on rheological behavior of biobased composite slurry composed of sisal fiber and thermoplastic oxidized starch,” J. Biobased. Mater. Bio., 11, No. 2, 119–124 (2017).CrossRef
12.
go back to reference X. Zhang, X. L. Wang, Q. L. Wang, et al., “Hydride ion (H–) transport behavior in barium hydride under high pressure,” Phys. Chem. Chem. Phys., 20, No. 13, 8917– 8923 (2018).CrossRef X. Zhang, X. L. Wang, Q. L. Wang, et al., “Hydride ion (H) transport behavior in barium hydride under high pressure,” Phys. Chem. Chem. Phys., 20, No. 13, 8917– 8923 (2018).CrossRef
13.
go back to reference Y. Z. Wan, H. Luo, F. He, et al., “Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites,” Compos. Sci. Technol., 69, Nos. 7–8, 1212–1217 (2009).CrossRef Y. Z. Wan, H. Luo, F. He, et al., “Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites,” Compos. Sci. Technol., 69, Nos. 7–8, 1212–1217 (2009).CrossRef
14.
go back to reference P. Liu, F. Y. Li, J. F. Li, et al., “Thermoplastic starch matrix plasticized by single/compound plasticizer in starch-based composites,” Adv. Funct. Mater., 45, No. 14, 14140–14144 (2014). P. Liu, F. Y. Li, J. F. Li, et al., “Thermoplastic starch matrix plasticized by single/compound plasticizer in starch-based composites,” Adv. Funct. Mater., 45, No. 14, 14140–14144 (2014).
15.
go back to reference X. F. Ma and J. G. Yu, “Thermoplastic starch plasticized by the mixture of urea and formamide,” Acta Polym. Sin., No. 4, 483–489 (2004). X. F. Ma and J. G. Yu, “Thermoplastic starch plasticized by the mixture of urea and formamide,” Acta Polym. Sin., No. 4, 483–489 (2004).
16.
go back to reference X. F. Ma and J. G. Yu, “Hydrogen bond of thermoplastic starch and effects on its properties,” Acta Chim. Sinica, 62, No. 12, 1180–1184 (2004). X. F. Ma and J. G. Yu, “Hydrogen bond of thermoplastic starch and effects on its properties,” Acta Chim. Sinica, 62, No. 12, 1180–1184 (2004).
17.
go back to reference W. Aichholzer and H.-G. Fritz, “Rheological characterization of thermoplastic starch materials,” Starch-Starke, 50, No. 50, 77–83 (1998).CrossRef W. Aichholzer and H.-G. Fritz, “Rheological characterization of thermoplastic starch materials,” Starch-Starke, 50, No. 50, 77–83 (1998).CrossRef
18.
go back to reference G. Della Valle, B. Vergnes, and D. Lourdin, “Viscous properties of thermoplastic starches from different botanical origin,” Int. Polym. Proc., 22, No. 5, 471–479 (2007).CrossRef G. Della Valle, B. Vergnes, and D. Lourdin, “Viscous properties of thermoplastic starches from different botanical origin,” Int. Polym. Proc., 22, No. 5, 471–479 (2007).CrossRef
19.
go back to reference A. F. Guo, J. F. Li, F. Y. Li, and B. K. Wei, “Study on the biodegradagility of plant fiber and starch dishware,” J. Funct. Mater., 40, No. 11, 1929–1932 (2009). A. F. Guo, J. F. Li, F. Y. Li, and B. K. Wei, “Study on the biodegradagility of plant fiber and starch dishware,” J. Funct. Mater., 40, No. 11, 1929–1932 (2009).
20.
go back to reference G. Canché-Escamilla, M. Canché-Canché, S. Duarte-Aranda, et al., “Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics,” Carbohyd. Polym., 86, No. 4, 1501–1508 (2011).CrossRef G. Canché-Escamilla, M. Canché-Canché, S. Duarte-Aranda, et al., “Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics,” Carbohyd. Polym., 86, No. 4, 1501–1508 (2011).CrossRef
21.
go back to reference T. Ma, Y. L. Wang, J. Wan, and L. W. Zhang, “Common cushion packing materials static compress property testing study,” Packaging Eng., 23, No. 2, 4–8 (2002). T. Ma, Y. L. Wang, J. Wan, and L. W. Zhang, “Common cushion packing materials static compress property testing study,” Packaging Eng., 23, No. 2, 4–8 (2002).
22.
go back to reference B. L. Lu, “Research on static compression cushion curve of EPE polyethylene foaming material,” Packaging Eng., 28, No. 2, 42–44 (2007). B. L. Lu, “Research on static compression cushion curve of EPE polyethylene foaming material,” Packaging Eng., 28, No. 2, 42–44 (2007).
23.
go back to reference X. Ming, Y. Zhao, J. Lu, and Q. L. Peng, “Contrast and analysis of packaging material cushioning performance based on static compression testing,” Packaging Eng., 27, No. 2, 59–61 (2006). X. Ming, Y. Zhao, J. Lu, and Q. L. Peng, “Contrast and analysis of packaging material cushioning performance based on static compression testing,” Packaging Eng., 27, No. 2, 59–61 (2006).
24.
go back to reference A. Guo, J. Zhao, J. Li, and K. Guan, “Forming parameters optimisation of biomass cushion packaging material by orthogonal test,” Mater. Res. Innov., 19, S5-521–S5-525 (2015).CrossRef A. Guo, J. Zhao, J. Li, and K. Guan, “Forming parameters optimisation of biomass cushion packaging material by orthogonal test,” Mater. Res. Innov., 19, S5-521–S5-525 (2015).CrossRef
25.
go back to reference GB/T 8168-2008. Testing Method of Static Compression for Packaging Cushioning Materials. GB/T 8168-2008. Testing Method of Static Compression for Packaging Cushioning Materials.
Metadata
Title
Compression Behavior of Biodegradable Thermoplastic Plasticizer-Containing Composites
Authors
A. F. Guo
J. F. Li
F. Y. Li
J. Xu
C. W. Zhang
S. Chen
Publication date
29-03-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00045-0

Other articles of this Issue 1/2019

Strength of Materials 1/2019 Go to the issue

Premium Partners