Skip to main content
Top
Published in: Computational Mechanics 3/2018

31-10-2017 | Original Paper

Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation

Authors: Barış Cansız, Hüsnü Dal, Michael Kaliske

Published in: Computational Mechanics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Working mechanisms of the cardiac defibrillation are still in debate due to the limited experimental facilities and one-third of patients even do not respond to cardiac resynchronization therapy. With an aim to develop a milestone towards reaching the unrevealed mechanisms of the defibrillation phenomenon, we propose a bidomain based finite element formulation of cardiac electromechanics by taking into account the viscous effects that are disregarded by many researchers. To do so, the material is deemed as an electro-visco-active material and described by the modified Hill model (Cansız et al. in Comput Methods Appl Mech Eng 315:434–466, 2017). On the numerical side, we utilize a staggered solution method, where the elliptic and parabolic part of the bidomain equations and the mechanical field are solved sequentially. The comparative simulations designate that the viscoelastic and elastic formulations lead to remarkably different outcomes upon an externally applied electric field to the myocardial tissue. Besides, the achieved framework requires significantly less computational time and memory compared to monolithic schemes without loss of stability for the presented examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853CrossRef Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853CrossRef
2.
go back to reference Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603CrossRef Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603CrossRef
3.
go back to reference Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301CrossRef Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301CrossRef
4.
go back to reference Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646MathSciNetCrossRefMATH Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646MathSciNetCrossRefMATH
5.
go back to reference Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van del Wall EE (2006) Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med 3:213–219CrossRef Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van del Wall EE (2006) Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med 3:213–219CrossRef
6.
go back to reference Bragard J, Elorza J, Cherry EM, Fenton FH (2013) Validation of a computational model of cardiac defibrillation. Comput Cardiol 2013:851–854 Bragard J, Elorza J, Cherry EM, Fenton FH (2013) Validation of a computational model of cardiac defibrillation. Comput Cardiol 2013:851–854
7.
go back to reference Cansız B, Dal H, Kaliske M (2015) Fully coupled cardiac electromechanics with orthotropic viscoelastic effects. Proc IUTAM 12:124–133CrossRef Cansız B, Dal H, Kaliske M (2015) Fully coupled cardiac electromechanics with orthotropic viscoelastic effects. Proc IUTAM 12:124–133CrossRef
8.
go back to reference Cansız B, Dal H, Kaliske M (2017) Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466MathSciNetCrossRef Cansız B, Dal H, Kaliske M (2017) Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466MathSciNetCrossRef
9.
go back to reference Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172CrossRef Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172CrossRef
10.
go back to reference Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573CrossRef Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573CrossRef
11.
go back to reference Colli Franzone P, Pavarino L, Savaré G (2006) Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni A, Formaggia L, Veneziani A (eds) Complex systems in biomedicine. Springer, Milan, pp 187–241CrossRef Colli Franzone P, Pavarino L, Savaré G (2006) Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni A, Formaggia L, Veneziani A (eds) Complex systems in biomedicine. Springer, Milan, pp 187–241CrossRef
12.
go back to reference Dal H, Göktepe S, Kuhl E, Kaliske M (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comput Methods Biomech Biomed Eng 15:645–656CrossRefMATH Dal H, Göktepe S, Kuhl E, Kaliske M (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comput Methods Biomech Biomed Eng 15:645–656CrossRefMATH
13.
go back to reference Dal H, Göktepe S, Kuhl E, Kaliske M (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336MathSciNetCrossRefMATH Dal H, Göktepe S, Kuhl E, Kaliske M (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336MathSciNetCrossRefMATH
14.
go back to reference dos Santos R, Plank G, Bauer S, Vigmond E (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51:1960–1968CrossRef dos Santos R, Plank G, Bauer S, Vigmond E (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51:1960–1968CrossRef
15.
go back to reference Franzone PC, Pavarino L, Scacchi S (2015) Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl Numer Math 95:140–153MathSciNetCrossRefMATH Franzone PC, Pavarino L, Scacchi S (2015) Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl Numer Math 95:140–153MathSciNetCrossRefMATH
16.
go back to reference Gerardo-Giorda L, Mirabella L, Nobile F, Perego M, Veneziani A (2009) A model-based block-triangular preconditioner for the bidomain system in electrocardiology. J Comput Phys 228:3625–3639MathSciNetCrossRefMATH Gerardo-Giorda L, Mirabella L, Nobile F, Perego M, Veneziani A (2009) A model-based block-triangular preconditioner for the bidomain system in electrocardiology. J Comput Phys 228:3625–3639MathSciNetCrossRefMATH
17.
go back to reference Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Methods Eng 79:156–178MathSciNetCrossRefMATH Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Methods Eng 79:156–178MathSciNetCrossRefMATH
18.
go back to reference Göktepe S, Menzel A, Kuhl E (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39MathSciNetCrossRefMATH Göktepe S, Menzel A, Kuhl E (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39MathSciNetCrossRefMATH
19.
go back to reference Graber ML (2013) The incidence of diagnostic error in medicine. BMJ Qual Saf 22:21–27CrossRef Graber ML (2013) The incidence of diagnostic error in medicine. BMJ Qual Saf 22:21–27CrossRef
20.
go back to reference Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Biol Sci 126:136–195CrossRef Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Biol Sci 126:136–195CrossRef
21.
go back to reference Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367:3445–3475MathSciNetCrossRefMATH Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367:3445–3475MathSciNetCrossRefMATH
22.
go back to reference Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91:331–338CrossRef Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91:331–338CrossRef
23.
go back to reference Johnston PR (2010) A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Comput Methods Biomech Biomed Eng 13:157–170CrossRef Johnston PR (2010) A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Comput Methods Biomech Biomed Eng 13:157–170CrossRef
24.
go back to reference Keener JP, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos Interdiscip J Nonlinear Sci 8:234–241CrossRefMATH Keener JP, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos Interdiscip J Nonlinear Sci 8:234–241CrossRefMATH
25.
go back to reference Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach toward cardiac excitation. Int J Numer Methods Biomed Eng 26:524–533MathSciNetMATH Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach toward cardiac excitation. Int J Numer Methods Biomed Eng 26:524–533MathSciNetMATH
26.
go back to reference Lecarpentier Y, Chemla D (1990) Mehcanical analysis of sarcomere by laser diffraction: energy excahnge and cardiac insuffiency. In: Swynghedauw B (ed) Research in cardiac hypertrophy and failure. INSERM/John Linney Eurotext, Paris, pp 137–160 Lecarpentier Y, Chemla D (1990) Mehcanical analysis of sarcomere by laser diffraction: energy excahnge and cardiac insuffiency. In: Swynghedauw B (ed) Research in cardiac hypertrophy and failure. INSERM/John Linney Eurotext, Paris, pp 137–160
27.
go back to reference Lecarpentier Y, Martin JL, Claes V, Chambaret JP, Migus A, Antonetti A, Hatt PY (1985) Real-time kinetics of sarcomere relaxation by laser diffraction. Circ Res 56:331–9CrossRef Lecarpentier Y, Martin JL, Claes V, Chambaret JP, Migus A, Antonetti A, Hatt PY (1985) Real-time kinetics of sarcomere relaxation by laser diffraction. Circ Res 56:331–9CrossRef
28.
go back to reference Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram i: the normal heart. Circ Res 43:301–315CrossRef Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram i: the normal heart. Circ Res 43:301–315CrossRef
29.
go back to reference Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522CrossRef Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522CrossRef
30.
go back to reference Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. Syst Biol 50:617–630 Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. Syst Biol 50:617–630
31.
go back to reference Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89:336CrossRef Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89:336CrossRef
32.
go back to reference Niederer SA, Shetty A, Plank G, Bostock J, Razavi R, Smith N, Rinaldi C (2012) Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin Electrophysiol 35:204–214CrossRef Niederer SA, Shetty A, Plank G, Bostock J, Razavi R, Smith N, Rinaldi C (2012) Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin Electrophysiol 35:204–214CrossRef
33.
go back to reference Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction–diffusion–mechanics system. Phys Rev Lett 95:258,104-1–258,104-4CrossRef Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction–diffusion–mechanics system. Phys Rev Lett 95:258,104-1–258,104-4CrossRef
34.
go back to reference Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ (2010) A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol 102:136–155CrossRef Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ (2010) A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol 102:136–155CrossRef
35.
go back to reference Pollard AE, Hooke N, Henriquez CS (1992) Cardiac propagation simultion. Crit Rev Biomed Eng 20:171–210 Pollard AE, Hooke N, Henriquez CS (1992) Cardiac propagation simultion. Crit Rev Biomed Eng 20:171–210
36.
go back to reference Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53:2425–2435CrossRef Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53:2425–2435CrossRef
37.
go back to reference Roth BJ, Beaudoin DL (2003) Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E 67:051,925–1–051,925–8CrossRef Roth BJ, Beaudoin DL (2003) Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E 67:051,925–1–051,925–8CrossRef
38.
go back to reference Southern JA, Plank G, Vigmond EJ, Whiteley JP (2009) Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans Biomed Eng 56:2404–2412CrossRef Southern JA, Plank G, Vigmond EJ, Whiteley JP (2009) Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans Biomed Eng 56:2404–2412CrossRef
39.
go back to reference Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math Biosci 194:233–248MathSciNetCrossRefMATH Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math Biosci 194:233–248MathSciNetCrossRefMATH
40.
go back to reference Trayanova N (2006) Defibrillation of heart: insights into mechanisms from modelling studies. Exp Physiol 91:323–337CrossRef Trayanova N (2006) Defibrillation of heart: insights into mechanisms from modelling studies. Exp Physiol 91:323–337CrossRef
41.
go back to reference Tung L (1978) A bidomain model for describing ischaemic myocardial dc potentials. Ph.D. thesis, MIT Tung L (1978) A bidomain model for describing ischaemic myocardial dc potentials. Ph.D. thesis, MIT
42.
go back to reference Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4:249–257CrossRefMATH Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4:249–257CrossRefMATH
43.
go back to reference Vernooy K, van Deursen CJM, Strik M, Prinzen FW (2014) Strategies to improve cardiac resynchronization therapy. Nat Rev Cardiol 11:481–493CrossRef Vernooy K, van Deursen CJM, Strik M, Prinzen FW (2014) Strategies to improve cardiac resynchronization therapy. Nat Rev Cardiol 11:481–493CrossRef
44.
go back to reference Vigmond E, Aguel F, Trayanova N (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng 49:1260–1269CrossRef Vigmond E, Aguel F, Trayanova N (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng 49:1260–1269CrossRef
45.
go back to reference Vigmond E, dos Santos RW, Prassl A, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 96:3–18CrossRef Vigmond E, dos Santos RW, Prassl A, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 96:3–18CrossRef
46.
go back to reference Vigmond E, Vadakkumpadan F, Gurev V, Arevalo H, Deo M, Plank G, Trayanova N (2009) Towards predictive modelling of the electrophysiology of the heart. Exp Physiol 94:563–577CrossRef Vigmond E, Vadakkumpadan F, Gurev V, Arevalo H, Deo M, Plank G, Trayanova N (2009) Towards predictive modelling of the electrophysiology of the heart. Exp Physiol 94:563–577CrossRef
47.
go back to reference Vigmond EJ, Hughes M, Plank G, Leon LJ (2003) Computational tools for modeling electrical activity in cardiac tissue. J Electrocardiol 36:69–74CrossRef Vigmond EJ, Hughes M, Plank G, Leon LJ (2003) Computational tools for modeling electrical activity in cardiac tissue. J Electrocardiol 36:69–74CrossRef
Metadata
Title
Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation
Authors
Barış Cansız
Hüsnü Dal
Michael Kaliske
Publication date
31-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1495-z

Other articles of this Issue 3/2018

Computational Mechanics 3/2018 Go to the issue