Skip to main content
Erschienen in: Computational Mechanics 3/2018

31.10.2017 | Original Paper

Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation

verfasst von: Barış Cansız, Hüsnü Dal, Michael Kaliske

Erschienen in: Computational Mechanics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Working mechanisms of the cardiac defibrillation are still in debate due to the limited experimental facilities and one-third of patients even do not respond to cardiac resynchronization therapy. With an aim to develop a milestone towards reaching the unrevealed mechanisms of the defibrillation phenomenon, we propose a bidomain based finite element formulation of cardiac electromechanics by taking into account the viscous effects that are disregarded by many researchers. To do so, the material is deemed as an electro-visco-active material and described by the modified Hill model (Cansız et al. in Comput Methods Appl Mech Eng 315:434–466, 2017). On the numerical side, we utilize a staggered solution method, where the elliptic and parabolic part of the bidomain equations and the mechanical field are solved sequentially. The comparative simulations designate that the viscoelastic and elastic formulations lead to remarkably different outcomes upon an externally applied electric field to the myocardial tissue. Besides, the achieved framework requires significantly less computational time and memory compared to monolithic schemes without loss of stability for the presented examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853CrossRef Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853CrossRef
2.
Zurück zum Zitat Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603CrossRef Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603CrossRef
3.
Zurück zum Zitat Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301CrossRef Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301CrossRef
4.
Zurück zum Zitat Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646MathSciNetCrossRefMATH Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van del Wall EE (2006) Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med 3:213–219CrossRef Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van del Wall EE (2006) Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med 3:213–219CrossRef
6.
Zurück zum Zitat Bragard J, Elorza J, Cherry EM, Fenton FH (2013) Validation of a computational model of cardiac defibrillation. Comput Cardiol 2013:851–854 Bragard J, Elorza J, Cherry EM, Fenton FH (2013) Validation of a computational model of cardiac defibrillation. Comput Cardiol 2013:851–854
7.
Zurück zum Zitat Cansız B, Dal H, Kaliske M (2015) Fully coupled cardiac electromechanics with orthotropic viscoelastic effects. Proc IUTAM 12:124–133CrossRef Cansız B, Dal H, Kaliske M (2015) Fully coupled cardiac electromechanics with orthotropic viscoelastic effects. Proc IUTAM 12:124–133CrossRef
8.
Zurück zum Zitat Cansız B, Dal H, Kaliske M (2017) Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466MathSciNetCrossRef Cansız B, Dal H, Kaliske M (2017) Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466MathSciNetCrossRef
9.
Zurück zum Zitat Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172CrossRef Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172CrossRef
10.
Zurück zum Zitat Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573CrossRef Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573CrossRef
11.
Zurück zum Zitat Colli Franzone P, Pavarino L, Savaré G (2006) Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni A, Formaggia L, Veneziani A (eds) Complex systems in biomedicine. Springer, Milan, pp 187–241CrossRef Colli Franzone P, Pavarino L, Savaré G (2006) Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni A, Formaggia L, Veneziani A (eds) Complex systems in biomedicine. Springer, Milan, pp 187–241CrossRef
12.
Zurück zum Zitat Dal H, Göktepe S, Kuhl E, Kaliske M (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comput Methods Biomech Biomed Eng 15:645–656CrossRefMATH Dal H, Göktepe S, Kuhl E, Kaliske M (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comput Methods Biomech Biomed Eng 15:645–656CrossRefMATH
13.
Zurück zum Zitat Dal H, Göktepe S, Kuhl E, Kaliske M (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336MathSciNetCrossRefMATH Dal H, Göktepe S, Kuhl E, Kaliske M (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336MathSciNetCrossRefMATH
14.
Zurück zum Zitat dos Santos R, Plank G, Bauer S, Vigmond E (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51:1960–1968CrossRef dos Santos R, Plank G, Bauer S, Vigmond E (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51:1960–1968CrossRef
15.
Zurück zum Zitat Franzone PC, Pavarino L, Scacchi S (2015) Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl Numer Math 95:140–153MathSciNetCrossRefMATH Franzone PC, Pavarino L, Scacchi S (2015) Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl Numer Math 95:140–153MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gerardo-Giorda L, Mirabella L, Nobile F, Perego M, Veneziani A (2009) A model-based block-triangular preconditioner for the bidomain system in electrocardiology. J Comput Phys 228:3625–3639MathSciNetCrossRefMATH Gerardo-Giorda L, Mirabella L, Nobile F, Perego M, Veneziani A (2009) A model-based block-triangular preconditioner for the bidomain system in electrocardiology. J Comput Phys 228:3625–3639MathSciNetCrossRefMATH
17.
Zurück zum Zitat Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Methods Eng 79:156–178MathSciNetCrossRefMATH Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Methods Eng 79:156–178MathSciNetCrossRefMATH
18.
Zurück zum Zitat Göktepe S, Menzel A, Kuhl E (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39MathSciNetCrossRefMATH Göktepe S, Menzel A, Kuhl E (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39MathSciNetCrossRefMATH
19.
Zurück zum Zitat Graber ML (2013) The incidence of diagnostic error in medicine. BMJ Qual Saf 22:21–27CrossRef Graber ML (2013) The incidence of diagnostic error in medicine. BMJ Qual Saf 22:21–27CrossRef
20.
Zurück zum Zitat Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Biol Sci 126:136–195CrossRef Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Biol Sci 126:136–195CrossRef
21.
Zurück zum Zitat Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367:3445–3475MathSciNetCrossRefMATH Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367:3445–3475MathSciNetCrossRefMATH
22.
Zurück zum Zitat Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91:331–338CrossRef Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91:331–338CrossRef
23.
Zurück zum Zitat Johnston PR (2010) A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Comput Methods Biomech Biomed Eng 13:157–170CrossRef Johnston PR (2010) A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Comput Methods Biomech Biomed Eng 13:157–170CrossRef
24.
Zurück zum Zitat Keener JP, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos Interdiscip J Nonlinear Sci 8:234–241CrossRefMATH Keener JP, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos Interdiscip J Nonlinear Sci 8:234–241CrossRefMATH
25.
Zurück zum Zitat Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach toward cardiac excitation. Int J Numer Methods Biomed Eng 26:524–533MathSciNetMATH Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach toward cardiac excitation. Int J Numer Methods Biomed Eng 26:524–533MathSciNetMATH
26.
Zurück zum Zitat Lecarpentier Y, Chemla D (1990) Mehcanical analysis of sarcomere by laser diffraction: energy excahnge and cardiac insuffiency. In: Swynghedauw B (ed) Research in cardiac hypertrophy and failure. INSERM/John Linney Eurotext, Paris, pp 137–160 Lecarpentier Y, Chemla D (1990) Mehcanical analysis of sarcomere by laser diffraction: energy excahnge and cardiac insuffiency. In: Swynghedauw B (ed) Research in cardiac hypertrophy and failure. INSERM/John Linney Eurotext, Paris, pp 137–160
27.
Zurück zum Zitat Lecarpentier Y, Martin JL, Claes V, Chambaret JP, Migus A, Antonetti A, Hatt PY (1985) Real-time kinetics of sarcomere relaxation by laser diffraction. Circ Res 56:331–9CrossRef Lecarpentier Y, Martin JL, Claes V, Chambaret JP, Migus A, Antonetti A, Hatt PY (1985) Real-time kinetics of sarcomere relaxation by laser diffraction. Circ Res 56:331–9CrossRef
28.
Zurück zum Zitat Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram i: the normal heart. Circ Res 43:301–315CrossRef Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram i: the normal heart. Circ Res 43:301–315CrossRef
29.
Zurück zum Zitat Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522CrossRef Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522CrossRef
30.
Zurück zum Zitat Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. Syst Biol 50:617–630 Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. Syst Biol 50:617–630
31.
Zurück zum Zitat Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89:336CrossRef Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89:336CrossRef
32.
Zurück zum Zitat Niederer SA, Shetty A, Plank G, Bostock J, Razavi R, Smith N, Rinaldi C (2012) Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin Electrophysiol 35:204–214CrossRef Niederer SA, Shetty A, Plank G, Bostock J, Razavi R, Smith N, Rinaldi C (2012) Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin Electrophysiol 35:204–214CrossRef
33.
Zurück zum Zitat Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction–diffusion–mechanics system. Phys Rev Lett 95:258,104-1–258,104-4CrossRef Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction–diffusion–mechanics system. Phys Rev Lett 95:258,104-1–258,104-4CrossRef
34.
Zurück zum Zitat Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ (2010) A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol 102:136–155CrossRef Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ (2010) A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol 102:136–155CrossRef
35.
Zurück zum Zitat Pollard AE, Hooke N, Henriquez CS (1992) Cardiac propagation simultion. Crit Rev Biomed Eng 20:171–210 Pollard AE, Hooke N, Henriquez CS (1992) Cardiac propagation simultion. Crit Rev Biomed Eng 20:171–210
36.
Zurück zum Zitat Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53:2425–2435CrossRef Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53:2425–2435CrossRef
37.
Zurück zum Zitat Roth BJ, Beaudoin DL (2003) Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E 67:051,925–1–051,925–8CrossRef Roth BJ, Beaudoin DL (2003) Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E 67:051,925–1–051,925–8CrossRef
38.
Zurück zum Zitat Southern JA, Plank G, Vigmond EJ, Whiteley JP (2009) Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans Biomed Eng 56:2404–2412CrossRef Southern JA, Plank G, Vigmond EJ, Whiteley JP (2009) Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans Biomed Eng 56:2404–2412CrossRef
39.
Zurück zum Zitat Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math Biosci 194:233–248MathSciNetCrossRefMATH Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math Biosci 194:233–248MathSciNetCrossRefMATH
40.
Zurück zum Zitat Trayanova N (2006) Defibrillation of heart: insights into mechanisms from modelling studies. Exp Physiol 91:323–337CrossRef Trayanova N (2006) Defibrillation of heart: insights into mechanisms from modelling studies. Exp Physiol 91:323–337CrossRef
41.
Zurück zum Zitat Tung L (1978) A bidomain model for describing ischaemic myocardial dc potentials. Ph.D. thesis, MIT Tung L (1978) A bidomain model for describing ischaemic myocardial dc potentials. Ph.D. thesis, MIT
42.
Zurück zum Zitat Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4:249–257CrossRefMATH Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4:249–257CrossRefMATH
43.
Zurück zum Zitat Vernooy K, van Deursen CJM, Strik M, Prinzen FW (2014) Strategies to improve cardiac resynchronization therapy. Nat Rev Cardiol 11:481–493CrossRef Vernooy K, van Deursen CJM, Strik M, Prinzen FW (2014) Strategies to improve cardiac resynchronization therapy. Nat Rev Cardiol 11:481–493CrossRef
44.
Zurück zum Zitat Vigmond E, Aguel F, Trayanova N (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng 49:1260–1269CrossRef Vigmond E, Aguel F, Trayanova N (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng 49:1260–1269CrossRef
45.
Zurück zum Zitat Vigmond E, dos Santos RW, Prassl A, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 96:3–18CrossRef Vigmond E, dos Santos RW, Prassl A, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 96:3–18CrossRef
46.
Zurück zum Zitat Vigmond E, Vadakkumpadan F, Gurev V, Arevalo H, Deo M, Plank G, Trayanova N (2009) Towards predictive modelling of the electrophysiology of the heart. Exp Physiol 94:563–577CrossRef Vigmond E, Vadakkumpadan F, Gurev V, Arevalo H, Deo M, Plank G, Trayanova N (2009) Towards predictive modelling of the electrophysiology of the heart. Exp Physiol 94:563–577CrossRef
47.
Zurück zum Zitat Vigmond EJ, Hughes M, Plank G, Leon LJ (2003) Computational tools for modeling electrical activity in cardiac tissue. J Electrocardiol 36:69–74CrossRef Vigmond EJ, Hughes M, Plank G, Leon LJ (2003) Computational tools for modeling electrical activity in cardiac tissue. J Electrocardiol 36:69–74CrossRef
Metadaten
Titel
Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation
verfasst von
Barış Cansız
Hüsnü Dal
Michael Kaliske
Publikationsdatum
31.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1495-z

Weitere Artikel der Ausgabe 3/2018

Computational Mechanics 3/2018 Zur Ausgabe

Neuer Inhalt