Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 12/2021

15-07-2021 | Research Article-Mechanical Engineering

Computational Erosion Wear Model Validation of Particulate Flow Through Mitre Pipe Bend

Authors: Om Parkash, Arvind kumar, Basant Singh Sikarwar

Published in: Arabian Journal for Science and Engineering | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The erosive wear rate caused by slurry flow is the worst phenomenon associated with complex geometry like bend, curved cross section and rotating machinery. The numerous quantitative research is available in the past for findings of erosive wear rate through pipe bend, but findings of erosive wear rate through pipe bend using Fluent based various erosion models are not yet established. In the present work, erosion wear rate using four computational-based erosion models viz. Generic, Oka, Finnie and Mclaury through horizontal mitre pipe bend instigated by bottom ash particulates slurry has been investigated using Fluent code. The solid particulates of spherical shapes 162 µm, 300 µm and 445 µm having density 2219 kg/m3 were tracked to compute the erosion wear rate using Discrete Phase Model (DPM). The particulates were tracked using Eulerian–Lagrangian approach coupled with kɛ turbulent model at volume fraction ranging from 2.5 to 10% for wide range of velocities viz. 1–10 ms−1. Additionally, the results of DPM concentration, turbulence intensity, velocity and particle tracking using particulate residence time were predicted to analyze the erosive rate through pipe bend. The simulated outcomes show that the maximum erosion wear rate exists at the extrados of pipeline near the bend exit. Finally, the effects of particulate size, concentration and velocity were discussed on erosion wear rate. Furthermore, the simulated outcomes obtained through computational erosion models were verified with the available experimental data and findings show that the outcomes obtained with Generic model could be the benchmark for designing the slurry pipeline bend.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brown, G.J.: Erosion prediction in slurry pipeline tee-junctions. Appl. Math. Model 26(2), 155–170 (2002)CrossRef Brown, G.J.: Erosion prediction in slurry pipeline tee-junctions. Appl. Math. Model 26(2), 155–170 (2002)CrossRef
2.
go back to reference Mazumder, Q.H.; Shirazi, S.A.; McLaury, B.: Experimental investigation of the location of maximum erosive wear damage in elbows. J. Press. Vessel Technol. 130(1), 1–7 (2008)CrossRef Mazumder, Q.H.; Shirazi, S.A.; McLaury, B.: Experimental investigation of the location of maximum erosive wear damage in elbows. J. Press. Vessel Technol. 130(1), 1–7 (2008)CrossRef
3.
go back to reference Li, S.K.K.; Humphrey, J.A.; Levy, A.V.: Erosive wear of ductile metals by a particle-laden high velocity liquid jet. Wear 73(2), 295–309 (1981)CrossRef Li, S.K.K.; Humphrey, J.A.; Levy, A.V.: Erosive wear of ductile metals by a particle-laden high velocity liquid jet. Wear 73(2), 295–309 (1981)CrossRef
4.
go back to reference Tsai, W.J.A.I.; Humphrey, J.A.C.; Cornet, I.; Levy, A.V.: Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68(3), 289–303 (1981)CrossRef Tsai, W.J.A.I.; Humphrey, J.A.C.; Cornet, I.; Levy, A.V.: Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68(3), 289–303 (1981)CrossRef
5.
go back to reference Finnie, I.: Erosion of surfaces by solid particles. Wear 3(2), 87–103 (1960)CrossRef Finnie, I.: Erosion of surfaces by solid particles. Wear 3(2), 87–103 (1960)CrossRef
6.
go back to reference Bitter, J.G.A.: A study of erosion phenomena: part I. Wear 6(1), 2–5 (1963)CrossRef Bitter, J.G.A.: A study of erosion phenomena: part I. Wear 6(1), 2–5 (1963)CrossRef
7.
go back to reference Grant, G.; Tabakoff, W.: Erosion prediction in turbomachinery resulting from Environmental solid particles. J Aircr 12(5), 471–478 (1975)CrossRef Grant, G.; Tabakoff, W.: Erosion prediction in turbomachinery resulting from Environmental solid particles. J Aircr 12(5), 471–478 (1975)CrossRef
8.
go back to reference Hutchings, I.M.; Winter, R.E.; Field, J.E.: Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc. R. Soc. Lond. Math. Phys. Sci. 348(1654), 379–392 (1976) Hutchings, I.M.; Winter, R.E.; Field, J.E.: Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc. R. Soc. Lond. Math. Phys. Sci. 348(1654), 379–392 (1976)
9.
go back to reference Lushchik, V.G.; Yakubenko, A.E.: Comparative analysis of turbulence models for calculating a near-wall boundary layer. Fluid Dyn. 33(1), 36–47 (1998)CrossRef Lushchik, V.G.; Yakubenko, A.E.: Comparative analysis of turbulence models for calculating a near-wall boundary layer. Fluid Dyn. 33(1), 36–47 (1998)CrossRef
10.
go back to reference Oka, Y.I.; Okamura, K.; Yoshida, T.: Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear 259(1–6), 95–101 (2005)CrossRef Oka, Y.I.; Okamura, K.; Yoshida, T.: Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear 259(1–6), 95–101 (2005)CrossRef
11.
go back to reference McLaury, B.S.; Chen, X.; Shirazi, S.A.: Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees. Comput. Fluids 33(10), 1251–1272 (2004)CrossRef McLaury, B.S.; Chen, X.; Shirazi, S.A.: Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees. Comput. Fluids 33(10), 1251–1272 (2004)CrossRef
12.
go back to reference Neilson, J.H.; Gilchrist, A.: Erosion by a stream of solid particles. Wear 11, 111–122 (1968)CrossRef Neilson, J.H.; Gilchrist, A.: Erosion by a stream of solid particles. Wear 11, 111–122 (1968)CrossRef
13.
go back to reference Meng, H.C.; Ludema, K.C.: Wear models and predictive equations: their form and content. Wear 181, 443–457 (1995)CrossRef Meng, H.C.; Ludema, K.C.: Wear models and predictive equations: their form and content. Wear 181, 443–457 (1995)CrossRef
14.
go back to reference Huang, C.S.; Chiovelli, P.; Minev Luo, J.; Nandakumar, K.: A comprehensive phenomenological model for erosion of materials in jet flow. Powder Technol. 187(3), 273–279 (2008)CrossRef Huang, C.S.; Chiovelli, P.; Minev Luo, J.; Nandakumar, K.: A comprehensive phenomenological model for erosion of materials in jet flow. Powder Technol. 187(3), 273–279 (2008)CrossRef
15.
go back to reference Wood, R.J.K.; Jones, T.F.; Ganeshalingam, J.; Miles, N.J.: Comparison of predicted and experimental erosion estimates in slurry ducts. Wear 256(9–10), 937–947 (2004)CrossRef Wood, R.J.K.; Jones, T.F.; Ganeshalingam, J.; Miles, N.J.: Comparison of predicted and experimental erosion estimates in slurry ducts. Wear 256(9–10), 937–947 (2004)CrossRef
16.
go back to reference Tan, Y.; Zhang, H.; Yang, D.; Jiang, S.; Song, S.; Sheng, Y.: Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall. Tribol. Int. 46(1), 137–144 (2012) Tan, Y.; Zhang, H.; Yang, D.; Jiang, S.; Song, S.; Sheng, Y.: Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall. Tribol. Int. 46(1), 137–144 (2012)
17.
go back to reference Zhang, H.; Tan, Y.; Yang, D.; Trias, F.X.; Jiang, S.; Sheng, Y.; Olivan, A.: Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technol. 217, 467–476 (2012)CrossRef Zhang, H.; Tan, Y.; Yang, D.; Trias, F.X.; Jiang, S.; Sheng, Y.; Olivan, A.: Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technol. 217, 467–476 (2012)CrossRef
18.
go back to reference Njobuenwu, D.O.; Fairweather, M.: Modelling of pipe bend erosion by dilute particle suspensions. Comput. Chem. Eng. 42, 235–247 (2012)CrossRef Njobuenwu, D.O.; Fairweather, M.: Modelling of pipe bend erosion by dilute particle suspensions. Comput. Chem. Eng. 42, 235–247 (2012)CrossRef
19.
go back to reference Zeng, L.; Zhang, G.A.; Guo, X.P.: Erosion–corrosion at different locations of X65 carbon steel elbow. Corros. Sci. 85, 318–330 (2014)CrossRef Zeng, L.; Zhang, G.A.; Guo, X.P.: Erosion–corrosion at different locations of X65 carbon steel elbow. Corros. Sci. 85, 318–330 (2014)CrossRef
20.
go back to reference Jafari, M.; Mansoori, Z.; Saffar Avval, M.; Ahmadi, G.; Ebadi, A.: Modeling and numerical investigation of erosion rate for turbulent two-phase gas–solid flow in horizontal pipes. Powder Technol. 267, 362–370 (2014)CrossRef Jafari, M.; Mansoori, Z.; Saffar Avval, M.; Ahmadi, G.; Ebadi, A.: Modeling and numerical investigation of erosion rate for turbulent two-phase gas–solid flow in horizontal pipes. Powder Technol. 267, 362–370 (2014)CrossRef
21.
go back to reference Mahdi, E.; Rauf, A.; Eltai, E.O.: Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content. Corros. Sci. 83, 48–58 (2014)CrossRef Mahdi, E.; Rauf, A.; Eltai, E.O.: Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content. Corros. Sci. 83, 48–58 (2014)CrossRef
22.
go back to reference Safaei, M.R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S.N.; Gharehkhani, S.: Investigation of micro and nanosized particle erosion in a 90° pipe bend using a two-phase discrete phase model. Sci. World J. 74057, 1–12 (2014)CrossRef Safaei, M.R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S.N.; Gharehkhani, S.: Investigation of micro and nanosized particle erosion in a 90° pipe bend using a two-phase discrete phase model. Sci. World J. 74057, 1–12 (2014)CrossRef
23.
go back to reference Chen, J.Y.; Wang, X.; Li, R.; He, S.; Han Chen, Y.: Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method. Powder Technol. 275, 182–187 (2015)CrossRef Chen, J.Y.; Wang, X.; Li, R.; He, S.; Han Chen, Y.: Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method. Powder Technol. 275, 182–187 (2015)CrossRef
24.
go back to reference Peng, W.; Cao, X.: Numerical prediction of solid particle erosion in pipe bends with liquid-solid flow. Powder Technol. 294, 266–279 (2016)CrossRef Peng, W.; Cao, X.: Numerical prediction of solid particle erosion in pipe bends with liquid-solid flow. Powder Technol. 294, 266–279 (2016)CrossRef
25.
go back to reference Duarte, C.A.R.; de Souza, F.J.: Innovative pipe wall design to mitigate elbow erosion: a CFD analysis. Wear 380, 176–190 (2017)CrossRef Duarte, C.A.R.; de Souza, F.J.: Innovative pipe wall design to mitigate elbow erosion: a CFD analysis. Wear 380, 176–190 (2017)CrossRef
26.
go back to reference Singh, J.; Kumar, S.; Singh, J.P.; Kumar, P.; Mohapatra, S.K.: CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension. Particul. Sci. Technol. 37(3), 275–285 (2019)CrossRef Singh, J.; Kumar, S.; Singh, J.P.; Kumar, P.; Mohapatra, S.K.: CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension. Particul. Sci. Technol. 37(3), 275–285 (2019)CrossRef
28.
go back to reference Tarodiya, R.; Khullar, S.; Gandhi, B.K.: CFD modeling of multi-sized particulate slurry flow through pipe bend. J. Appl. Fluid Mech. 13(4), 1311–1321 (2020) Tarodiya, R.; Khullar, S.; Gandhi, B.K.: CFD modeling of multi-sized particulate slurry flow through pipe bend. J. Appl. Fluid Mech. 13(4), 1311–1321 (2020)
29.
go back to reference Cheng, L.; Mewes, D.: Advances in Multiphase Flow and Heat Transfer, Vol. 3. Bentham Science Publishers, Sharjah (2012)CrossRef Cheng, L.; Mewes, D.: Advances in Multiphase Flow and Heat Transfer, Vol. 3. Bentham Science Publishers, Sharjah (2012)CrossRef
30.
go back to reference Das, R.; Mishra, S.C.; Ajith, M.; Uppaluri, R.: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J. Quant. Spectrosc. Radiat. Transf. 109(11), 2060–2077 (2008)CrossRef Das, R.; Mishra, S.C.; Ajith, M.; Uppaluri, R.: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J. Quant. Spectrosc. Radiat. Transf. 109(11), 2060–2077 (2008)CrossRef
31.
go back to reference Mishra, S.C.; Kim, M.Y.; Das, R.; Ajith, M.; Uppaluri, R.: Lattice Boltzmann method applied to the analysis of transient conduction-radiation problems in a cylindrical medium. Numer. Heat Transf. A 56(1), 42–59 (2009)CrossRef Mishra, S.C.; Kim, M.Y.; Das, R.; Ajith, M.; Uppaluri, R.: Lattice Boltzmann method applied to the analysis of transient conduction-radiation problems in a cylindrical medium. Numer. Heat Transf. A 56(1), 42–59 (2009)CrossRef
32.
go back to reference Das, R.: A simulated annealing-based inverse computational fluid dynamics model for unknown parameter estimation in fluid flow problem. Int. J. Comut. Fluid Dyn. 26(9–10), 499–513 (2012)MathSciNetCrossRef Das, R.: A simulated annealing-based inverse computational fluid dynamics model for unknown parameter estimation in fluid flow problem. Int. J. Comut. Fluid Dyn. 26(9–10), 499–513 (2012)MathSciNetCrossRef
33.
go back to reference Das, R.: Inverse analysis of Navier-Stokes equations using simplex search method. Inverse Probl Sci Eng 20(4), 445–462 (2012)MathSciNetCrossRef Das, R.: Inverse analysis of Navier-Stokes equations using simplex search method. Inverse Probl Sci Eng 20(4), 445–462 (2012)MathSciNetCrossRef
34.
go back to reference Singla, R.K.; Das, R.: Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation. Int. J. Heat Mass Transf. 66, 496–506 (2013)CrossRef Singla, R.K.; Das, R.: Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation. Int. J. Heat Mass Transf. 66, 496–506 (2013)CrossRef
35.
go back to reference Kaushal, D.R.; Kumar, A.; Tomita, Y.; Tsukamoto, K.S.H.: Flow of mono-dispersed particles through horizontal bend. Int. J. Multiph. Flow 52, 71–91 (2013)CrossRef Kaushal, D.R.; Kumar, A.; Tomita, Y.; Tsukamoto, K.S.H.: Flow of mono-dispersed particles through horizontal bend. Int. J. Multiph. Flow 52, 71–91 (2013)CrossRef
36.
go back to reference Edwards, J.K.: Development, validation, and application of a three-dimensional, CFD-based erosion prediction procedure, Doctoral dissertation, University of Tulsa (2000) Edwards, J.K.: Development, validation, and application of a three-dimensional, CFD-based erosion prediction procedure, Doctoral dissertation, University of Tulsa (2000)
Metadata
Title
Computational Erosion Wear Model Validation of Particulate Flow Through Mitre Pipe Bend
Authors
Om Parkash
Arvind kumar
Basant Singh Sikarwar
Publication date
15-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 12/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05931-x

Other articles of this Issue 12/2021

Arabian Journal for Science and Engineering 12/2021 Go to the issue

Premium Partners