Skip to main content
Top

2022 | OriginalPaper | Chapter

13. Computational Setting

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter sketches the consequences for computational mechanics by outlining the material force method based on finite element discretization of the material virtual work principle and highlights its applicability to geometrically nonlinear fracture mechanics by some computational examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Moreover, for example, the Piola-Kirchhoff and Mandel stress read concretely as
$$ \boldsymbol{S}=\mu [\boldsymbol{I}-\boldsymbol{B} ]+\lambda \ln J\boldsymbol{B}\quad \text{ and } \quad \boldsymbol{M}=\mu [\boldsymbol{C}-\boldsymbol{I} ]+\lambda \ln J\boldsymbol{I}, $$
whereas the Cauchy stress and the Piola-type Eshelby stress expand as
$$ J\boldsymbol{\sigma }=\mu [\boldsymbol{b}-\boldsymbol{i}]+\lambda \ln J\boldsymbol{i}\quad \text{ and } \quad J\boldsymbol{p}=\psi _\mathrm{m}\boldsymbol{F}^t-\mu \boldsymbol{F}^t\cdot [\boldsymbol{b}-\boldsymbol{i}]-\lambda \ln J\boldsymbol{F}^t. $$
.
 
Literature
1.
go back to reference Ackermann D, Barth FJ, Steinmann P (1999) Theoretical and computational aspects of geometrically nonlinear problems in fracture mechanics. In: Proceedings (CD-ROM) of the European conference on computational mechanics ECCM’99 (ECCOMAS), August 31 to September 3, Munich, Germany 1999 Ackermann D, Barth FJ, Steinmann P (1999) Theoretical and computational aspects of geometrically nonlinear problems in fracture mechanics. In: Proceedings (CD-ROM) of the European conference on computational mechanics ECCM’99 (ECCOMAS), August 31 to September 3, Munich, Germany 1999
2.
go back to reference Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391 Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391
3.
go back to reference Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526 Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526
Metadata
Title
Computational Setting
Author
Paul Steinmann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89070-4_13

Premium Partners