Skip to main content
Top

2022 | OriginalPaper | Chapter

12. Consequences of Thermodynamical Balances

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter exploits the consequences of the thermodynamical balances and the resulting formats of the dissipation power inequalities by identifying the forces driving material (configurational) changes on the boundary and at singular surfaces as the appropriate contributions to the balance of material momentum. It is the here advocated thermodynamical derivation of material forces that qualifies the current approach as being dissipation-consistent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Spatial objectivity is here particularized as invariance of the free energy density \(\psi _\mathrm{m}\) under superposed rigid body motions (srbm). These follow as
$$ \boldsymbol{y}(\boldsymbol{X}, t)\quad \rightarrow \quad \boldsymbol{Q}(t)\cdot \boldsymbol{y}(\boldsymbol{X}, t)+\boldsymbol{c}(t) $$
with \(\boldsymbol{Q}\in \text{ SO(3) }\) and \(\boldsymbol{c}\in \text{ T(3) }\) arbitrary elements from the special orthogonal and the translational (three-dimensional) groups, respectively. Thus, spatial objectivity requires
$$ \psi _\mathrm{m}(\boldsymbol{y}, \cdots )\doteq \psi _\mathrm{m}(\boldsymbol{Q}\cdot \boldsymbol{y}+\boldsymbol{c}, \cdots )\quad \forall \boldsymbol{Q}\in \text{ SO(3) }\quad \text{ and } \quad \forall \boldsymbol{c}\in \text{ T(3) }. $$
Obviously, this can only be satisfied for \(\psi _\mathrm{m}\not =\psi _\mathrm{m}(\boldsymbol{y})\). It is also recalled that spatial objectivity results in the dependence of \(\psi _\mathrm{m}\) on \(\boldsymbol{F}\) through \(\boldsymbol{C}\) (under srbm \(\boldsymbol{F}\rightarrow \boldsymbol{Q}\cdot \boldsymbol{F}\), whereas \(\boldsymbol{C}\) remains invariant, thus \(\psi _\mathrm{m}(\boldsymbol{C})\) remains invariant too) and thus, in agreement with the balance of spatial angular momentum, eventually also in the symmetry of the spatial description Kirchhoff stress \(\boldsymbol{\tau }=\boldsymbol{\tau }^t\).
 
Literature
1.
go back to reference Javili A, McBride A, Steinmann P (2013) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Methods Eng 93:551–574MathSciNetCrossRef Javili A, McBride A, Steinmann P (2013) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Methods Eng 93:551–574MathSciNetCrossRef
2.
go back to reference Esmaeili A, Javili A, Steinmann P (2017) Highly-conductive energetic coherent interfaces subject to in-plane degradation. Math Mech Solids 22:1696–1716MathSciNetCrossRef Esmaeili A, Javili A, Steinmann P (2017) Highly-conductive energetic coherent interfaces subject to in-plane degradation. Math Mech Solids 22:1696–1716MathSciNetCrossRef
3.
4.
go back to reference Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) kapitza interfaces. Comput Mat Sci 65:542–551CrossRef Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) kapitza interfaces. Comput Mat Sci 65:542–551CrossRef
5.
go back to reference Kaessmair S, Javili A, Steinmann P (2014) Thermomechanics of solids with general imperfect coherent interfaces. Arch Appl Mech 84:1409–1426CrossRef Kaessmair S, Javili A, Steinmann P (2014) Thermomechanics of solids with general imperfect coherent interfaces. Arch Appl Mech 84:1409–1426CrossRef
6.
go back to reference Esmaeili A, Javili A, Steinmann P (2016) A thermo-mechanical cohesive zone model accounting for mechanically energetic kapitza interfaces. Int J Solids Struct 92:29–44CrossRef Esmaeili A, Javili A, Steinmann P (2016) A thermo-mechanical cohesive zone model accounting for mechanically energetic kapitza interfaces. Int J Solids Struct 92:29–44CrossRef
7.
go back to reference Esmaeili A, Steinmann P, Javili A (2017) Coupled thermally general imperfect and mechanically coherent energetic interfaces subject to in-plane degradation. J Mech Mat Struct 12:289–312MathSciNetCrossRef Esmaeili A, Steinmann P, Javili A (2017) Coupled thermally general imperfect and mechanically coherent energetic interfaces subject to in-plane degradation. J Mech Mat Struct 12:289–312MathSciNetCrossRef
8.
go back to reference Steinmann P, Runesson K (2021) The catalogue of computational material models: basic geometrically linear models in 1D. Springer Nature, Berlin Steinmann P, Runesson K (2021) The catalogue of computational material models: basic geometrically linear models in 1D. Springer Nature, Berlin
9.
go back to reference Maugin GA (2000) On the universality of the thermomechanics of forces driving singular sets. Arch Appl Mech 70:31–45CrossRef Maugin GA (2000) On the universality of the thermomechanics of forces driving singular sets. Arch Appl Mech 70:31–45CrossRef
10.
go back to reference Kienzler R, Herrmann G (2003) On the four-dimensional formalism in continuum mechanics. Acta Mech 161:103–125CrossRef Kienzler R, Herrmann G (2003) On the four-dimensional formalism in continuum mechanics. Acta Mech 161:103–125CrossRef
11.
go back to reference Kienzler R, Herrmann G (2004) On conservation laws in elastodynamics. Int J Solids Struct 41:3595–3606CrossRef Kienzler R, Herrmann G (2004) On conservation laws in elastodynamics. Int J Solids Struct 41:3595–3606CrossRef
12.
go back to reference Steinmann P (2011) Geometrically nonlinear gravito-elasticity: hyperelastostatics coupled to newtonian gravitation. Int J Eng Sci 49:1452–1460MathSciNetCrossRef Steinmann P (2011) Geometrically nonlinear gravito-elasticity: hyperelastostatics coupled to newtonian gravitation. Int J Eng Sci 49:1452–1460MathSciNetCrossRef
Metadata
Title
Consequences of Thermodynamical Balances
Author
Paul Steinmann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89070-4_12

Premium Partners