Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames

Authors : M. Valorani, F. Creta, P. P. Ciottoli, R. Malpica Galassi, D. A. Goussis, H. N. Najm, S. Paolucci, H. G. Im, E.-A. Tingas, D. M. Manias, A. Parente, Z. Li, T. Grenga

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 3 summarized the highlights of the concepts behind the CSP method and the TSR analysis. In this chapter, we will discuss a few applications of these techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Valorani, P. Ciottoli, R. Malpica Galassi, S. Paolucci, T. Grenga, E. Martelli, Flow Turbul. Combust. 101(4), 1023 (2018) M. Valorani, P. Ciottoli, R. Malpica Galassi, S. Paolucci, T. Grenga, E. Martelli, Flow Turbul. Combust. 101(4), 1023 (2018)
6.
7.
go back to reference M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, in Computational Fluid and Solid Mechanics 2005, ed. by K. Bathe (Elsevier Science, 2005), pp. 900–904 M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, in Computational Fluid and Solid Mechanics 2005, ed. by K. Bathe (Elsevier Science, 2005), pp. 900–904
8.
go back to reference R.M. Galassi, P.P. Ciottoli, S.M. Sarathy, H.G. Im, S. Paolucci, M. Valorani, Combust. Flame 197, 439 (2018)CrossRef R.M. Galassi, P.P. Ciottoli, S.M. Sarathy, H.G. Im, S. Paolucci, M. Valorani, Combust. Flame 197, 439 (2018)CrossRef
9.
go back to reference A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Flame 117(6), 685–708 (1999)CrossRef A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Flame 117(6), 685–708 (1999)CrossRef
10.
go back to reference A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Theory Model. 3(6), 233–257 (1999)CrossRef A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Theory Model. 3(6), 233–257 (1999)CrossRef
15.
go back to reference M. Valorani, P. Ciottoli, R. Malpica Galassi, CSPTk - A software toolkit for the CSP and TSR analysis of kinetic models and the simplification and reduction of chemical kinetics mechanisms. The software can be obtained upon request to M.Valorani (mauro.valorani@uniroma1.it) (2015) M. Valorani, P. Ciottoli, R. Malpica Galassi, CSPTk - A software toolkit for the CSP and TSR analysis of kinetic models and the simplification and reduction of chemical kinetics mechanisms. The software can be obtained upon request to M.Valorani (mauro.valorani@uniroma1.it) (2015)
16.
go back to reference E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Flame 162(9), 3263 (2015)CrossRef E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Flame 162(9), 3263 (2015)CrossRef
17.
20.
go back to reference D.M. Manias, E.A. Tingas, C.E. Frouzakis, K. Boulouchos, D.A. Goussis, Combust. Flame 164, 111 (2016)CrossRef D.M. Manias, E.A. Tingas, C.E. Frouzakis, K. Boulouchos, D.A. Goussis, Combust. Flame 164, 111 (2016)CrossRef
22.
go back to reference A. Kazakov, M. Chaos, Z. Zhao, F.L. Dryer, J. Phys. Chem. A 110(21), 7003 (2006)CrossRef A. Kazakov, M. Chaos, Z. Zhao, F.L. Dryer, J. Phys. Chem. A 110(21), 7003 (2006)CrossRef
23.
go back to reference E.A. Tingas, D.C. Kyritsis, D.A. Goussis, J. Energ. Eng. 145(1), 04018074 (2018)CrossRef E.A. Tingas, D.C. Kyritsis, D.A. Goussis, J. Energ. Eng. 145(1), 04018074 (2018)CrossRef
24.
go back to reference Y. Li, A. Alfazazi, B. Mohan, E.A. Tingas, J. Badra, H.G. Im, S.M. Sarathy, Fuel 247, 164 (2019)CrossRef Y. Li, A. Alfazazi, B. Mohan, E.A. Tingas, J. Badra, H.G. Im, S.M. Sarathy, Fuel 247, 164 (2019)CrossRef
27.
28.
go back to reference E.A. Tingas, Z. Wang, S.M. Sarathy, H.G. Im, D.A. Goussis, Combust. Flame 188, 28 (2018)CrossRef E.A. Tingas, Z. Wang, S.M. Sarathy, H.G. Im, D.A. Goussis, Combust. Flame 188, 28 (2018)CrossRef
29.
go back to reference S.M. Sarathy, E.A. Tingas, E.F. Nasir, A. Detogni, Z. Wang, A. Farooq, H. Im, Proc (Combust, Inst, 2018) S.M. Sarathy, E.A. Tingas, E.F. Nasir, A. Detogni, Z. Wang, A. Farooq, H. Im, Proc (Combust, Inst, 2018)
30.
31.
go back to reference K. Zhang, C. Banyon, J. Bugler, H.J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir, K.A. Heufer, Combustion and Flame 172, 116 (2016)CrossRef K. Zhang, C. Banyon, J. Bugler, H.J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir, K.A. Heufer, Combustion and Flame 172, 116 (2016)CrossRef
32.
34.
go back to reference J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J.J. Scire, International Journal of Chemical Kinetics 39, 109 (2007)CrossRef J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J.J. Scire, International Journal of Chemical Kinetics 39, 109 (2007)CrossRef
35.
go back to reference P. Pal, M. Valorani, P.G. Arias, H.G. Im, M.S. Wooldridge, P.P. Ciottoli, R. Malpica Galassi, Proc. Combust. Inst. 36(3), 3705 (2017) P. Pal, M. Valorani, P.G. Arias, H.G. Im, M.S. Wooldridge, P.P. Ciottoli, R. Malpica Galassi, Proc. Combust. Inst. 36(3), 3705 (2017)
36.
go back to reference P. Pal, A.B. Mansfield, M.S. Wooldridge, H.G. Im, Combustion Theory and Modelling 66(5), 1 (2015) P. Pal, A.B. Mansfield, M.S. Wooldridge, H.G. Im, Combustion Theory and Modelling 66(5), 1 (2015)
37.
go back to reference M. Valorani, P.P. Ciottoli, R.M. Galassi, Proc. Combust. Inst. 36(1), 1357 (2017)CrossRef M. Valorani, P.P. Ciottoli, R.M. Galassi, Proc. Combust. Inst. 36(1), 1357 (2017)CrossRef
38.
go back to reference C. Trevino, Progress in Astronautics and Aeronautics. AIAA 131, 19 (1991) C. Trevino, Progress in Astronautics and Aeronautics. AIAA 131, 19 (1991)
39.
go back to reference P. Boivin, C. Jimenez, A.L. Sànchez, F.A. Williams, Proceedings of the Combustion Institute 33(1), 517 (2011)CrossRef P. Boivin, C. Jimenez, A.L. Sànchez, F.A. Williams, Proceedings of the Combustion Institute 33(1), 517 (2011)CrossRef
40.
go back to reference P. Boivin, A.L. Sànchez, F.A. Williams, Combustion and Flame 159(2), 748 (2012)CrossRef P. Boivin, A.L. Sànchez, F.A. Williams, Combustion and Flame 159(2), 748 (2012)CrossRef
41.
go back to reference A. Cavaliere, M. de Joannon, Progress in Energy and Combustion science 30(4), 329 (2004)CrossRef A. Cavaliere, M. de Joannon, Progress in Energy and Combustion science 30(4), 329 (2004)CrossRef
42.
go back to reference H.G. Im, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 99–132 H.G. Im, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 99–132
43.
go back to reference H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Combustion Science and Technology 188(8), 1182 (2016)CrossRef H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Combustion Science and Technology 188(8), 1182 (2016)CrossRef
44.
go back to reference P. Arias, H. Uranakar, S. Chaudhuri, H. Im, in APS Meeting Abstracts (2015) P. Arias, H. Uranakar, S. Chaudhuri, H. Im, in APS Meeting Abstracts (2015)
45.
go back to reference D.M. Manias, E.A. Tingas, F.E.H. Pérez, R.M. Galassi, P.P. Ciottoli, M. Valorani, H.G. Im, Combust. Flame 200, 155 (2019)CrossRef D.M. Manias, E.A. Tingas, F.E.H. Pérez, R.M. Galassi, P.P. Ciottoli, M. Valorani, H.G. Im, Combust. Flame 200, 155 (2019)CrossRef
46.
go back to reference J.A. Wünning, J.G. Wünning, Progress in Energy and Combustion Science 23, 81 (1997)CrossRef J.A. Wünning, J.G. Wünning, Progress in Energy and Combustion Science 23, 81 (1997)CrossRef
47.
go back to reference A. Cavaliere, M. de Joannon, Progress in Energy and Combustion Science 30, 329 (2004)CrossRef A. Cavaliere, M. de Joannon, Progress in Energy and Combustion Science 30, 329 (2004)CrossRef
48.
49.
go back to reference M. de Joannon, G. Sorrentino, A. Cavaliere, Combustion and Flame 159, 1832 (2012)CrossRef M. de Joannon, G. Sorrentino, A. Cavaliere, Combustion and Flame 159, 1832 (2012)CrossRef
51.
go back to reference D.M. Manias, E.A. Tingas, Y. Minamoto, H.G. Im, Combustion and Flame 208, 86 (2019)CrossRef D.M. Manias, E.A. Tingas, Y. Minamoto, H.G. Im, Combustion and Flame 208, 86 (2019)CrossRef
52.
go back to reference Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Combustion Science and Technology 186(8), 1075 (2014)CrossRef Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Combustion Science and Technology 186(8), 1075 (2014)CrossRef
53.
54.
go back to reference Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Combustion and Flame 161(11), 2801 (2014)CrossRef Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Combustion and Flame 161(11), 2801 (2014)CrossRef
55.
56.
go back to reference P.R. Medwell, P.A. Kalt, B.B. Dally, Combustion and Flame 148(1–2), 48 (2007)CrossRef P.R. Medwell, P.A. Kalt, B.B. Dally, Combustion and Flame 148(1–2), 48 (2007)CrossRef
57.
go back to reference B.B. Dally, A.N. Karpetis, R.S. Barlow, Proceedings of the Combustion Institute 29, 1147 (2002)CrossRef B.B. Dally, A.N. Karpetis, R.S. Barlow, Proceedings of the Combustion Institute 29, 1147 (2002)CrossRef
58.
go back to reference E. Oldenhof, M.J. Tummers, E. van Veen, D. Roekaerts, Combustion and Flame 157, 1167 (2010)CrossRef E. Oldenhof, M.J. Tummers, E. van Veen, D. Roekaerts, Combustion and Flame 157, 1167 (2010)CrossRef
59.
go back to reference E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combustion and Flame 158(8), 1553 (2011)CrossRef E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combustion and Flame 158(8), 1553 (2011)CrossRef
60.
go back to reference N. Kornev, H. Kröger, E. Hassel, Communications in Numerial Methods in Engineering 24, 875 (2008)CrossRef N. Kornev, H. Kröger, E. Hassel, Communications in Numerial Methods in Engineering 24, 875 (2008)CrossRef
61.
go back to reference R.W. Bilger, S.H. Starner, R.J. Kee, Combustion and Flame 80(2), 135 (1990)CrossRef R.W. Bilger, S.H. Starner, R.J. Kee, Combustion and Flame 80(2), 135 (1990)CrossRef
63.
go back to reference Z. Li, A. Cuoci, A. Parente, Proceedings of the Combustion Institute (2018) Z. Li, A. Cuoci, A. Parente, Proceedings of the Combustion Institute (2018)
66.
go back to reference Z. Li, R.M. Galassi, P.P. Ciottoli, A. Parente, M. Valorani, Combust. Flame 208, 281 (2019)CrossRef Z. Li, R.M. Galassi, P.P. Ciottoli, A. Parente, M. Valorani, Combust. Flame 208, 281 (2019)CrossRef
67.
go back to reference H.N. Najm, M. Valorani, D.A. Goussis, J. Prager, Combustion Theory and Modelling 14(2), 257 (2010)CrossRef H.N. Najm, M. Valorani, D.A. Goussis, J. Prager, Combustion Theory and Modelling 14(2), 257 (2010)CrossRef
68.
Metadata
Title
Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames
Authors
M. Valorani
F. Creta
P. P. Ciottoli
R. Malpica Galassi
D. A. Goussis
H. N. Najm
S. Paolucci
H. G. Im
E.-A. Tingas
D. M. Manias
A. Parente
Z. Li
T. Grenga
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_4

Premium Partner