Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Chemical Explosive Mode Analysis for Diagnostics of Direct Numerical Simulations

Authors : Chun Sang Yoo, Tianfeng Lu, Jacqueline H. Chen

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct numerical simulation (DNS) has become an important tool to predict and understand complex structures and behaviors of turbulent flames over the last two decades, enabled by the rapid growth of supercomputer power and development of more efficient and accurate Navier–Stokes equation solvers [1]. To predict the strongly nonlinear chemical kinetic processes and their interactions with the flow, detailed chemistry is typically employed in DNS while the computational cost is high even after aggressive mechanism reduction [2]. DNS on today’s supercomputer is capable to generate massive datasets, say tens or hundreds of terabytes, even in cleaned forms, such that systematic computational diagnostic tools need to be developed to extract salient information from the massive raw data. Canonical diagnostic methods based on individual scalars, such as temperature or a species concentration and their combinations (e.g., progress variable and mixture fraction) have been widely employed in previous studies. However, the use of such scalars typically requires semi-empirical criteria that need to be adjusted for different flame types and conditions, rendering them difficult to be automated for the processing of large flame data. Tools universally applicable to different flames and suitable for DNS data diagnostics are scarce and need to be developed. To address this need, a method of chemical explosive mode analysis (CEMA) was recently developed to systematically detect critical flame features for general reacting flows, particularly when local ignition, extinction, and premixed flame fronts are involved [36]. CEMA has been demonstrated in elementary reactors, laminar flames and a variety of turbulent flames [39]. It was found that CEMA-based criteria are rather robust and reliable for limit phenomena detection for both premixed and partially premixed flames, and the use of CEMA in computational diagnostics of different types of flames is discussed in the present chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki et al., Comput. Sci. Discov. 2(1), 015001 (2009)CrossRef J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki et al., Comput. Sci. Discov. 2(1), 015001 (2009)CrossRef
4.
go back to reference Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, T. Lu, Combust. Flame 159(1), 265 (2012)CrossRef Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, T. Lu, Combust. Flame 159(1), 265 (2012)CrossRef
5.
6.
go back to reference C. Xu, J.W. Park, C.S. Yoo, J.H. Chen, T. Lu, Proc. Combust. Inst. 37(2), 2407 (2019)CrossRef C. Xu, J.W. Park, C.S. Yoo, J.H. Chen, T. Lu, Proc. Combust. Inst. 37(2), 2407 (2019)CrossRef
7.
go back to reference M.B. Luong, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 161(11), 2878 (2014)CrossRef M.B. Luong, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 161(11), 2878 (2014)CrossRef
8.
go back to reference C.S. Yoo, E.S. Richardson, R. Sankaran, J.H. Chen, Proc. Combust. Inst. 33(1), 1619 (2011)CrossRef C.S. Yoo, E.S. Richardson, R. Sankaran, J.H. Chen, Proc. Combust. Inst. 33(1), 1619 (2011)CrossRef
9.
go back to reference C.S. Yoo, Z. Luo, T. Lu, H. Kim, J.H. Chen, Proc. Combust. Inst. 34(2), 2985 (2013)CrossRef C.S. Yoo, Z. Luo, T. Lu, H. Kim, J.H. Chen, Proc. Combust. Inst. 34(2), 2985 (2013)CrossRef
10.
go back to reference C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2010) C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2010)
12.
13.
go back to reference J.E. Dec, Encyclopedia of Automotive Engineering (2014), pp. 1–40 J.E. Dec, Encyclopedia of Automotive Engineering (2014), pp. 1–40
14.
go back to reference M.B. Luong, Z. Luo, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 160(10), 2038 (2013)CrossRef M.B. Luong, Z. Luo, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 160(10), 2038 (2013)CrossRef
15.
16.
go back to reference S.O. Kim, M.B. Luong, J.H. Chen, C.S. Yoo, Combust. Flame 162(3), 717 (2015)CrossRef S.O. Kim, M.B. Luong, J.H. Chen, C.S. Yoo, Combust. Flame 162(3), 717 (2015)CrossRef
17.
go back to reference M.B. Luong, G.H. Yu, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 162(12), 4566 (2015)CrossRef M.B. Luong, G.H. Yu, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 162(12), 4566 (2015)CrossRef
18.
go back to reference M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3587 (2017)CrossRef M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3587 (2017)CrossRef
19.
go back to reference M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3623 (2017)CrossRef M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3623 (2017)CrossRef
20.
21.
22.
go back to reference A. Bhagatwala, R. Sankaran, S. Kokjohn, J.H. Chen, Combust. Flame 162(9), 3412 (2015)CrossRef A. Bhagatwala, R. Sankaran, S. Kokjohn, J.H. Chen, Combust. Flame 162(9), 3412 (2015)CrossRef
25.
go back to reference R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-iii: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical report (Sandia National Labs., Livermore, 1996) R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-iii: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical report (Sandia National Labs., Livermore, 1996)
26.
go back to reference R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, Sandia National Laboratories Report SAND86-8246 13, 80401 (1986) R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, Sandia National Laboratories Report SAND86-8246 13, 80401 (1986)
29.
33.
go back to reference S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(9), 3437 (2015)CrossRef S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(9), 3437 (2015)CrossRef
34.
go back to reference S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(12), 4471 (2015)CrossRef S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(12), 4471 (2015)CrossRef
35.
go back to reference K.S. Jung, S.O. Kim, T. Lu, S.H. Chung, B.J. Lee, C.S. Yoo, Combust. Flame 198, 305 (2018)CrossRef K.S. Jung, S.O. Kim, T. Lu, S.H. Chung, B.J. Lee, C.S. Yoo, Combust. Flame 198, 305 (2018)CrossRef
36.
go back to reference R. Grout, A. Gruber, H. Kolla, P.T. Bremer, J. Bennett, A. Gyulassy, J. Chen, J. Fluid Mech. 706, 351 (2012)CrossRef R. Grout, A. Gruber, H. Kolla, P.T. Bremer, J. Bennett, A. Gyulassy, J. Chen, J. Fluid Mech. 706, 351 (2012)CrossRef
37.
go back to reference H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 159(8), 2755 (2012)CrossRef H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 159(8), 2755 (2012)CrossRef
38.
go back to reference Y. Minamoto, H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 162(10), 3569 (2015)CrossRef Y. Minamoto, H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 162(10), 3569 (2015)CrossRef
39.
go back to reference S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T.C. Lieuwen, J.H. Chen, Combust. Flame 162(4), 1234 (2015)CrossRef S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T.C. Lieuwen, J.H. Chen, Combust. Flame 162(4), 1234 (2015)CrossRef
40.
go back to reference K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, J.H. Chen, Proc. Combust. Inst. 37(2), 2635 (2019)CrossRef K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, J.H. Chen, Proc. Combust. Inst. 37(2), 2635 (2019)CrossRef
41.
go back to reference C. Fureby, K. Nordin-Bates, K. Petterson, A. Bresson, V. Sabelnikov, Proc. Combust. Inst. 35(2), 2127 (2015)CrossRef C. Fureby, K. Nordin-Bates, K. Petterson, A. Bresson, V. Sabelnikov, Proc. Combust. Inst. 35(2), 2127 (2015)CrossRef
42.
go back to reference I.A. Dodoulas, S. Navarro-Martinez, Combust. Theor. Model. 19(1), 107 (2015)CrossRef I.A. Dodoulas, S. Navarro-Martinez, Combust. Theor. Model. 19(1), 107 (2015)CrossRef
43.
go back to reference K. Nordin-Bates, C. Fureby, S. Karl, K. Hannemann, Proc. Combust. Inst. 36(2), 2893 (2017)CrossRef K. Nordin-Bates, C. Fureby, S. Karl, K. Hannemann, Proc. Combust. Inst. 36(2), 2893 (2017)CrossRef
47.
49.
go back to reference C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren, T. Lu, Combust. Flame 195, 30 (2018)CrossRef C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren, T. Lu, Combust. Flame 195, 30 (2018)CrossRef
Metadata
Title
Chemical Explosive Mode Analysis for Diagnostics of Direct Numerical Simulations
Authors
Chun Sang Yoo
Tianfeng Lu
Jacqueline H. Chen
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_5

Premium Partner