Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Higher Order Tensors for DNS Data Analysis and Compression

Authors : Hemanth Kolla, Konduri Aditya, Jacqueline H. Chen

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose the use of higher order tensors, and their decompositions, for efficient analysis of combustion direct numerical simulation (DNS) data. Turbulent combustion DNS data, being inherently multiscale and multivariate, pose many challenges and higher order tensors are a natural abstraction to organise, probe and analyse them. The chapter gives a high-level overview of prominent tensor decomposition methods, their interpretation, algorithmic challenges and desirable properties. Two examples of DNS analysis employing tensor decompositions are then presented. The first analysis, based on truncated higher order singular value decomposition (truncated HOSVD), also known as Tucker decomposition, allows significant, albeit lossy, compression of DNS data, which may be inevitable in the exascale computing era. The factors aiding, and impeding, compression and the implications in terms of element-wise error distributions are presented using three candidate DNS data sets. The second analysis is centred on higher order joint moment tensors, which are richly informative for multivariate non-Gaussian variables. An anomaly detection algorithm based on the decomposition of the fourth moment tensor is presented, and its ability in detecting localised auto-ignition kernels in a homogeneous charge compression ignition (HCCI) data set is examined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference L.D. Lathauwer, B.D. Moor, J. Vandewalle, A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRef L.D. Lathauwer, B.D. Moor, J. Vandewalle, A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRef
3.
go back to reference J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)CrossRef J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)CrossRef
4.
go back to reference R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. in UCLA Working Papers in Phonetics, vol. 16, pp. 1–84 (1970) R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. in UCLA Working Papers in Phonetics, vol. 16, pp. 1–84 (1970)
5.
go back to reference P. Comon, G. Golub, L.H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)MathSciNetCrossRef P. Comon, G. Golub, L.H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)MathSciNetCrossRef
6.
go back to reference E. Kofidis, P.A. Regalia, On the best rank-1 approximation of higher order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)MathSciNetCrossRef E. Kofidis, P.A. Regalia, On the best rank-1 approximation of higher order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)MathSciNetCrossRef
8.
go back to reference T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multi-linear algebra, in ICDM 2005: Proceedings of the 5th IEEE International Conference on Data Mining, pp. 242–249 (2005) T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multi-linear algebra, in ICDM 2005: Proceedings of the 5th IEEE International Conference on Data Mining, pp. 242–249 (2005)
12.
go back to reference O. Owoyele, T. Echekki, Toward computationally efficient combustion dns with complex fuels via principal component transport. Combust. Theory Model. 21, 770–798 (2017)MathSciNetCrossRef O. Owoyele, T. Echekki, Toward computationally efficient combustion dns with complex fuels via principal component transport. Combust. Theory Model. 21, 770–798 (2017)MathSciNetCrossRef
14.
go back to reference T. Grenga, J.F. MacArt, M.E. Mueller, Dynamic mode decomposition of a direct numerical simulation of a turbulent premixed planar jet flame: convergence of the modes. Combust. Theory Model. 22, 795–811 (2018)MathSciNetCrossRef T. Grenga, J.F. MacArt, M.E. Mueller, Dynamic mode decomposition of a direct numerical simulation of a turbulent premixed planar jet flame: convergence of the modes. Combust. Theory Model. 22, 795–811 (2018)MathSciNetCrossRef
16.
go back to reference H. Kolla, J.H. Chen, Turbulent Combustion Simulations with High-Performance Computing (Springer, Singapore, 2018), pp. 73–97 H. Kolla, J.H. Chen, Turbulent Combustion Simulations with High-Performance Computing (Springer, Singapore, 2018), pp. 73–97
17.
23.
go back to reference S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T. Lieuwen, J. Chen, Structure of hydrogen-rich transverse jets in a vitiated turbulent flow. Combust. Flame 162, 1234–1248 (2015)CrossRef S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T. Lieuwen, J. Chen, Structure of hydrogen-rich transverse jets in a vitiated turbulent flow. Combust. Flame 162, 1234–1248 (2015)CrossRef
24.
go back to reference A. Parente, J.C. Sutherland, Principal component analysis of turbulent combustion data: data pre-processing and manifold sensitivity. Combust. Flame 160, 340–350 (2013)CrossRef A. Parente, J.C. Sutherland, Principal component analysis of turbulent combustion data: data pre-processing and manifold sensitivity. Combust. Flame 160, 340–350 (2013)CrossRef
25.
go back to reference K.N.C. Bray, P.A. Libby, J.B. Moss, Unified modeling approach for premixed turbulent combustion - part I: general formulation. Combust. Flame 61, 87–102 (1985)CrossRef K.N.C. Bray, P.A. Libby, J.B. Moss, Unified modeling approach for premixed turbulent combustion - part I: general formulation. Combust. Flame 61, 87–102 (1985)CrossRef
26.
go back to reference N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)CrossRef N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)CrossRef
27.
go back to reference G. Ballard, A. Klinvex, T.G. Kolda, TuckerMPI: a parallel C\(++\)/MPI software package for large-scale data compression via the Tucker tensor decomposition (2019) G. Ballard, A. Klinvex, T.G. Kolda, TuckerMPI: a parallel C\(++\)/MPI software package for large-scale data compression via the Tucker tensor decomposition (2019)
30.
go back to reference K. Aditya, H. Kolla, W.P. Kegelmeyer, T.M. Shead, J. Ling, W.L. Davis, Anomaly detection in scientific data using joint statistical moments. J. Comput. Phys. 387, 522–538 (2019)MathSciNetCrossRef K. Aditya, H. Kolla, W.P. Kegelmeyer, T.M. Shead, J. Ling, W.L. Davis, Anomaly detection in scientific data using joint statistical moments. J. Comput. Phys. 387, 522–538 (2019)MathSciNetCrossRef
31.
go back to reference P.H. Westfall, Kurtosis as Peakedness, 1905–2014. R.I.P. Am. Stat. 68(3), 191–195 (2014) P.H. Westfall, Kurtosis as Peakedness, 1905–2014. R.I.P. Am. Stat. 68(3), 191–195 (2014)
32.
go back to reference T. Kolda, J.R. Mayo, Shifted power method for computing tensor eigenpais. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)MathSciNetCrossRef T. Kolda, J.R. Mayo, Shifted power method for computing tensor eigenpais. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)MathSciNetCrossRef
34.
go back to reference J.F. Cardoso, Source separation using higher order moments, in International Conference on Acoustics, Speech, and Signal Processing, vol. 4 (1989) J.F. Cardoso, Source separation using higher order moments, in International Conference on Acoustics, Speech, and Signal Processing, vol. 4 (1989)
35.
go back to reference P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)CrossRef P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)CrossRef
36.
go back to reference P. Comon, J.F. Cardoso, Eigenvalue decomposition of cumulant tensor with applications, in SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations (San Diego, United States, 1990), pp. 361–372 P. Comon, J.F. Cardoso, Eigenvalue decomposition of cumulant tensor with applications, in SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations (San Diego, United States, 1990), pp. 361–372
37.
go back to reference A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade, M. Telgarsky, Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)MathSciNetMATH A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade, M. Telgarsky, Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)MathSciNetMATH
Metadata
Title
Higher Order Tensors for DNS Data Analysis and Compression
Authors
Hemanth Kolla
Konduri Aditya
Jacqueline H. Chen
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_6

Premium Partner