Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Data-Driven Modal Decomposition Techniques for High-Dimensional Flow Fields

Authors : Nicholas Arnold-Medabalimi, Cheng Huang, Karthik Duraisamy

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data-driven decomposition techniques are presented for the analysis and development of reduced-order models of complex flow dynamics. The Proper Orthogonal Decomposition (POD) produces optimal representations of the dynamics in the sense of the energy norm. Alternatively, Dynamic Mode Decomposition (DMD) efficiently extracts coherent dynamics based on eigendecompositions of linearized dynamics. An extension to the latter, the Higher Order Dynamic Mode Decomposition (HODMD) method uses time delays to develop efficient reduced models to represent complex dynamics in a nonintrusive manner. High-fidelity simulation results of a laboratory-scale single-element gas turbine combustor are used to demonstrate and evaluate the capabilities of the aforementioned decomposition techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.W. Strutt, B. Rayleigh, The Theory of Sound, vol. 2 (Macmillian, New York, 1896)MATH J.W. Strutt, B. Rayleigh, The Theory of Sound, vol. 2 (Macmillian, New York, 1896)MATH
2.
go back to reference T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors. Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations (1999), p. V002T02A001 T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors. Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations (1999), p. V002T02A001
3.
go back to reference T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (American Institute of Aeronautics and Astronautics, Inc., 2010) T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (American Institute of Aeronautics and Astronautics, Inc., 2010)
4.
go back to reference T. Feldman, M. Harvazinski, C. Merkle, W. Anderson, Comparison between simulation and measurement of self-excited combustion instability, in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012) T. Feldman, M. Harvazinski, C. Merkle, W. Anderson, Comparison between simulation and measurement of self-excited combustion instability, in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012)
5.
go back to reference T. Kim, M. Ahn, J. Hwang, S. Kim, Y. Yoon, The experimental investigation on the response of the Burke-Schumann flame to acoustic excitation. Proc. Combust. Inst. 36(1), 1629–1636 (2017)CrossRef T. Kim, M. Ahn, J. Hwang, S. Kim, Y. Yoon, The experimental investigation on the response of the Burke-Schumann flame to acoustic excitation. Proc. Combust. Inst. 36(1), 1629–1636 (2017)CrossRef
6.
go back to reference K. Taira, S.L. Brunton, S.T.M. Dawson, C.W. Rowley, T. Colonius, B.J. McKeon, O.T. Schmidt, S. Gordeyev, V. Theofilis, L.S. Ukeiley, Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef K. Taira, S.L. Brunton, S.T.M. Dawson, C.W. Rowley, T. Colonius, B.J. McKeon, O.T. Schmidt, S. Gordeyev, V. Theofilis, L.S. Ukeiley, Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef
7.
go back to reference K. Taira, M.S. Hemati, S.L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S.T.M. Dawson, C.-A. Yeh, Modal analysis of fluid flows: applications and outlook, 1–36 (2019), arXiv:1903.05750 K. Taira, M.S. Hemati, S.L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S.T.M. Dawson, C.-A. Yeh, Modal analysis of fluid flows: applications and outlook, 1–36 (2019), arXiv:​1903.​05750
8.
go back to reference C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(03), 997–1013 (2005)MathSciNetCrossRef C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(03), 997–1013 (2005)MathSciNetCrossRef
9.
go back to reference G. Berkooz, P. Holmes, L. John, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef G. Berkooz, P. Holmes, L. John, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef
10.
go back to reference K. Willcox, J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2012)CrossRef K. Willcox, J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2012)CrossRef
11.
go back to reference A. Chatterjee, An introduction to the proper orthogonal decomposition: Rensselaer libraries quick search. Current Sci. 78(7), 808–817 (2000) A. Chatterjee, An introduction to the proper orthogonal decomposition: Rensselaer libraries quick search. Current Sci. 78(7), 808–817 (2000)
12.
go back to reference P. Iudiciani, C. Duwig, S.M. Husseini, R.Z. Szasz, L. Fuchs, E.J. Gutmark, Proper orthogonal decomposition for experimental investigation of flame instabilities. AIAA J. 50(9), 1843–1854 (2012)CrossRef P. Iudiciani, C. Duwig, S.M. Husseini, R.Z. Szasz, L. Fuchs, E.J. Gutmark, Proper orthogonal decomposition for experimental investigation of flame instabilities. AIAA J. 50(9), 1843–1854 (2012)CrossRef
13.
14.
go back to reference H. Arbabi, I. Mezić, Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017)MathSciNetCrossRef H. Arbabi, I. Mezić, Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017)MathSciNetCrossRef
15.
go back to reference J. Nathan Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (SIAM, 2016) J. Nathan Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (SIAM, 2016)
16.
go back to reference J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J. Nathan Kutz, On dynamic mode decomposition: theory and applications, 1–30 (2013), arXiv:1312.0041 J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J. Nathan Kutz, On dynamic mode decomposition: theory and applications, 1–30 (2013), arXiv:​1312.​0041
17.
go back to reference A. Seena, H.J. Sung, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow 32(6), 1098–1110 (2011)CrossRef A. Seena, H.J. Sung, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow 32(6), 1098–1110 (2011)CrossRef
18.
go back to reference C. Huang, W.E. Anderson, M.E. Harvazinski, V. Sankaran, Analysis of self-excited combustion instabilities using decomposition techniques. AIAA J. 54(9), 2791–2807 (2016)CrossRef C. Huang, W.E. Anderson, M.E. Harvazinski, V. Sankaran, Analysis of self-excited combustion instabilities using decomposition techniques. AIAA J. 54(9), 2791–2807 (2016)CrossRef
19.
go back to reference A. Towne, O.T. Schmidt, T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867 (2018)MathSciNetCrossRef A. Towne, O.T. Schmidt, T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867 (2018)MathSciNetCrossRef
20.
go back to reference S. Pan, K. Duraisamy, On the structure of time-delay embedding in linear models of non-linear dynamical systems (2019), arXiv:1902.05198 S. Pan, K. Duraisamy, On the structure of time-delay embedding in linear models of non-linear dynamical systems (2019), arXiv:​1902.​05198
21.
go back to reference S. Le Clainche, J.M. Vega, Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16(2), 882–925 (2017)MathSciNetCrossRef S. Le Clainche, J.M. Vega, Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16(2), 882–925 (2017)MathSciNetCrossRef
22.
go back to reference S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J. Nathan Kutz, Chaos as an intermittently forced linear system. Nat. Commun. 8(1), 1–8 (2017) S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J. Nathan Kutz, Chaos as an intermittently forced linear system. Nat. Commun. 8(1), 1–8 (2017)
23.
go back to reference M. Mohebujjaman, L.G. Rebholz, T. Iliescu, Physically-constrained data-driven, filtered reduced order modeling of fluid flows, 1–21 (2018), arXiv:1806.00350 M. Mohebujjaman, L.G. Rebholz, T. Iliescu, Physically-constrained data-driven, filtered reduced order modeling of fluid flows, 1–21 (2018), arXiv:​1806.​00350
24.
go back to reference B.R. Noack, M. Morzynski, G. Tadmor, Reduced-Order Modelling for Flow Control, vol. 528 (Springer Science & Business Media, Berlin, 2011)CrossRef B.R. Noack, M. Morzynski, G. Tadmor, Reduced-Order Modelling for Flow Control, vol. 528 (Springer Science & Business Media, Berlin, 2011)CrossRef
25.
go back to reference L. Sirovich, Turbulence and the dynamics of coherent structures part i: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)CrossRef L. Sirovich, Turbulence and the dynamics of coherent structures part i: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)CrossRef
26.
go back to reference C.W. Rowley, I. Mezi, S. Bagheri, P. Schlatter, D.S. Henningson, Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)MathSciNetCrossRef C.W. Rowley, I. Mezi, S. Bagheri, P. Schlatter, D.S. Henningson, Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)MathSciNetCrossRef
27.
go back to reference F. Takens, Detecting strange attractors in turbulence dynamical systems and turbulence, Warwick 1980. Dyn. Syst. Turbul. 898, 366–381 (1981) F. Takens, Detecting strange attractors in turbulence dynamical systems and turbulence, Warwick 1980. Dyn. Syst. Turbul. 898, 366–381 (1981)
28.
go back to reference H. Arbabi, I. Mezić, Study of dynamics in post-transient flows using Koopman mode decomposition. Phys. Rev. Fluids 2(12) (2017) H. Arbabi, I. Mezić, Study of dynamics in post-transient flows using Koopman mode decomposition. Phys. Rev. Fluids 2(12) (2017)
29.
go back to reference G.E. Andrews, H.S. Alkabie, M.M.A. Aziz, U.S. Abdul Hussain, N.A. Al Dabbagh, N.A. Ahmad, A.A. Shaikly, M. Kowkabi, A.R. Shahabadi, High-intensity burners with low NOx emissions. Proc. Inst. Mech. Eng., Part A: J. Power Energy 206(1), 3–17 (1992)CrossRef G.E. Andrews, H.S. Alkabie, M.M.A. Aziz, U.S. Abdul Hussain, N.A. Al Dabbagh, N.A. Ahmad, A.A. Shaikly, M. Kowkabi, A.R. Shahabadi, High-intensity burners with low NOx emissions. Proc. Inst. Mech. Eng., Part A: J. Power Energy 206(1), 3–17 (1992)CrossRef
30.
go back to reference C. Huang, C. Yoon, R. Gejji, W. Anderson, V. Sankaran, Computational study of combustion dynamics in a single- element lean direct injection gas turbine combustor, in 52nd Aerospace Sciences Meeting, vol. 298 (2014), pp. 1–14 C. Huang, C. Yoon, R. Gejji, W. Anderson, V. Sankaran, Computational study of combustion dynamics in a single- element lean direct injection gas turbine combustor, in 52nd Aerospace Sciences Meeting, vol. 298 (2014), pp. 1–14
31.
go back to reference R.M. Gejji, C. Huang, C. Fugger, C. Yoon, W. Anderson, Parametric investigation of combustion instabilities in a single-element lean direct injection combustor. Int. J. Spray Combust. Dyn. 0(0)175682771878585 (2018)CrossRef R.M. Gejji, C. Huang, C. Fugger, C. Yoon, W. Anderson, Parametric investigation of combustion instabilities in a single-element lean direct injection combustor. Int. J. Spray Combust. Dyn. 0(0)175682771878585 (2018)CrossRef
32.
go back to reference S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, J.P. Moeck, Dynamics of swirling flames. Ann. Rev. Fluid Mech. 46(1), 147–173 (2013)MathSciNetCrossRef S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, J.P. Moeck, Dynamics of swirling flames. Ann. Rev. Fluid Mech. 46(1), 147–173 (2013)MathSciNetCrossRef
33.
go back to reference D. Li, G. Xia, V. Sankaran, C.L Merkle, Computational framework for complex fluids applications, in 3rd International Conference on Computational Fluid Dynamics (2004) D. Li, G. Xia, V. Sankaran, C.L Merkle, Computational framework for complex fluids applications, in 3rd International Conference on Computational Fluid Dynamics (2004)
34.
go back to reference C. Huang, R. Gejji, W. Anderson, C. Yoon, V. Sankaran, Combustion dynamics in a single-element lean direct injection gas turbine combustor. Combust. Sci. Technol. 0(0), 1–28 (2019) C. Huang, R. Gejji, W. Anderson, C. Yoon, V. Sankaran, Combustion dynamics in a single-element lean direct injection gas turbine combustor. Combust. Sci. Technol. 0(0), 1–28 (2019)
Metadata
Title
Data-Driven Modal Decomposition Techniques for High-Dimensional Flow Fields
Authors
Nicholas Arnold-Medabalimi
Cheng Huang
Karthik Duraisamy
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_7

Premium Partner