Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

07-10-2021 | Research Article-Computer Engineering and Computer Science

Computer-Aided Detection of COVID-19 from CT Images Based on Gaussian Mixture Model and Kernel Support Vector Machines Classifier

Author: Ahmet Saygılı

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

COVID-19 is a virus that has been declared an epidemic by the world health organization and causes more than 2 million deaths in the world. To achieve this, computer-aided automatic diagnosis systems are created on medical images. In this study, an image processing and machine learning-based method is proposed that enables segmenting of CT images taken from COVID-19 patients and automatic detection of the virus through the segmented images. The main purpose of the study is to automatically diagnose the COVID-19 virus. The study consists of three basic steps: preprocessing, segmentation and classification. Image resizing, image sharpening, noise removal, contrast stretching processes are included in the preprocessing phase and segmentation of images with Expectation–Maximization-based Gaussian Mixture Model in the segmentation phase. In the classification stage, COVID-19 is classified as positive and negative by using kNN, decision tree, and two different ensemble methods together with the kernel support vector machines method. In the study, two different CT datasets that are open to the public and a mixed dataset created by combining these datasets were used. The best accuracy values for Dataset-1, Dataset-2 and Mixed Dataset are 98.5%, 86.3%, 94.5%, respectively. The achieved results prove that the proposed approach advances state-of-the-art performance. Within the scope of the study, a GUI that can automatically detect COVID-19 has been created.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Fauci, A.S.; Lane, H.C.; Redfield, R.R.: Covid-19—navigating the uncharted. ed: Mass Medical Soc (2020) Fauci, A.S.; Lane, H.C.; Redfield, R.R.: Covid-19—navigating the uncharted. ed: Mass Medical Soc (2020)
3.
go back to reference Velavan, T.P.; Meyer, C.G.: The COVID-19 epidemic. Trop. Med. Int. Health 25, 278 (2020)CrossRef Velavan, T.P.; Meyer, C.G.: The COVID-19 epidemic. Trop. Med. Int. Health 25, 278 (2020)CrossRef
4.
go back to reference Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P., et al.: Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 34, 101623 (2020)CrossRef Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P., et al.: Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 34, 101623 (2020)CrossRef
5.
go back to reference Borghesi, A.; Maroldi, R.: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. Radiol. Med. (Torino) 125, 509–513 (2020)CrossRef Borghesi, A.; Maroldi, R.: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. Radiol. Med. (Torino) 125, 509–513 (2020)CrossRef
6.
go back to reference Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P., et al.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296, E115–E117 (2020)CrossRef Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P., et al.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296, E115–E117 (2020)CrossRef
7.
go back to reference Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y., et al.: Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 296, E72–E78 (2020)CrossRef Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y., et al.: Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 296, E72–E78 (2020)CrossRef
8.
go back to reference Kanne, J.P.; Little, B.P.; Chung, J.H.; Elicker, B.M.; Ketai, L.H.: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. ed: Radiological Society of North America (2020) Kanne, J.P.; Little, B.P.; Chung, J.H.; Elicker, B.M.; Ketai, L.H.: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. ed: Radiological Society of North America (2020)
9.
go back to reference Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J.: Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology 296, E41–E45 (2020)CrossRef Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J.: Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology 296, E41–E45 (2020)CrossRef
10.
go back to reference Devi, S.S.; Singh, N.H.; Laskar, R.H.: Fuzzy C-means clustering with histogram based cluster selection for skin lesion segmentation using non-dermoscopic images. Int. J. Interact. Multimed. Artif. Intell. 6, 26–31 (2020) Devi, S.S.; Singh, N.H.; Laskar, R.H.: Fuzzy C-means clustering with histogram based cluster selection for skin lesion segmentation using non-dermoscopic images. Int. J. Interact. Multimed. Artif. Intell. 6, 26–31 (2020)
11.
go back to reference Lee, E.Y.; Ng, M.-Y.; Khong, P.-L.: COVID-19 pneumonia: what has CT taught us? Lancet. Infect. Dis 20, 384–385 (2020)CrossRef Lee, E.Y.; Ng, M.-Y.; Khong, P.-L.: COVID-19 pneumonia: what has CT taught us? Lancet. Infect. Dis 20, 384–385 (2020)CrossRef
12.
go back to reference Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J., et al.: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet. Infect. Dis 20, 425–434 (2020)CrossRef Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J., et al.: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet. Infect. Dis 20, 425–434 (2020)CrossRef
13.
go back to reference Borakati, A.; Perera, A.; Johnson, J.; Sood, T.: Diagnostic accuracy of X-ray versus CT in COVID-19: a propensity-matched database study. BMJ Open 10, e042946 (2020)CrossRef Borakati, A.; Perera, A.; Johnson, J.; Sood, T.: Diagnostic accuracy of X-ray versus CT in COVID-19: a propensity-matched database study. BMJ Open 10, e042946 (2020)CrossRef
14.
go back to reference Ng, M.-Y.; Lee, E.Y.; Yang, J.; Yang, F.; Li, X.; Wang, H., et al.: Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothoracic Imaging 2, e200034 (2020)CrossRef Ng, M.-Y.; Lee, E.Y.; Yang, J.; Yang, F.; Li, X.; Wang, H., et al.: Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothoracic Imaging 2, e200034 (2020)CrossRef
15.
go back to reference Angelov, P.; Soares, E.: Explainable-by-design approach for covid-19 classification via ct-scan. medRxiv (2020) Angelov, P.; Soares, E.: Explainable-by-design approach for covid-19 classification via ct-scan. medRxiv (2020)
16.
go back to reference Hasan, N.; Bao, Y.; Shawon, A.: DenseNet convolutional neural networks application for predicting COVID-19 using CT Image (2020) Hasan, N.; Bao, Y.; Shawon, A.: DenseNet convolutional neural networks application for predicting COVID-19 using CT Image (2020)
17.
go back to reference Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Silva, R.; Lucio, D., et al.: COVID-19 detection in CT images with deep learning: a voting-based scheme and cross-datasets analysis. Inform. Med. Unlock. 20, 100427 (2020)CrossRef Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Silva, R.; Lucio, D., et al.: COVID-19 detection in CT images with deep learning: a voting-based scheme and cross-datasets analysis. Inform. Med. Unlock. 20, 100427 (2020)CrossRef
18.
go back to reference Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K.: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification. medRxiv, p. 2020.04.24.20078584 (2020) Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K.: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification. medRxiv, p. 2020.04.24.20078584 (2020)
19.
go back to reference Yazdani, S.; Minaee, S.; Kafieh, R.; Saeedizadeh, N.; Sonka, M.: Covid ct-net: predicting covid-19 from chest ct images using attentional convolutional network. arXiv preprintarXiv:2009.05096 (2020) Yazdani, S.; Minaee, S.; Kafieh, R.; Saeedizadeh, N.; Sonka, M.: Covid ct-net: predicting covid-19 from chest ct images using attentional convolutional network. arXiv preprintarXiv:​2009.​05096 (2020)
20.
go back to reference Abbas, A.; Abdelsamea, M M.; Gaber, M.M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell., pp. 1–11 (2020) Abbas, A.; Abdelsamea, M M.; Gaber, M.M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell., pp. 1–11 (2020)
21.
go back to reference Joshi, R.C.; Yadav, S.; Pathak, V.K.; Malhotra, H.S.; Khokhar, H.V.S.; Parihar, A., et al.: A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images. Biocybern. Biomed. Eng. 41, 239–254 (2021)CrossRef Joshi, R.C.; Yadav, S.; Pathak, V.K.; Malhotra, H.S.; Khokhar, H.V.S.; Parihar, A., et al.: A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images. Biocybern. Biomed. Eng. 41, 239–254 (2021)CrossRef
22.
go back to reference Linda, W.: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images. J. Netw. Comput. Appl. 20, 1–12 (2020) Linda, W.: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images. J. Netw. Comput. Appl. 20, 1–12 (2020)
23.
go back to reference Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)CrossRef Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)CrossRef
24.
go back to reference Almalki, Y.E.; Qayyum, A.; Irfan, M.; Haider, N.; Glowacz, A.; Alshehri, F.M., et al.: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images. Healthcare 9, 522 (2021)CrossRef Almalki, Y.E.; Qayyum, A.; Irfan, M.; Haider, N.; Glowacz, A.; Alshehri, F.M., et al.: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images. Healthcare 9, 522 (2021)CrossRef
25.
go back to reference Irfan, M.; Iftikhar, M.A.; Yasin, S.; Draz, U.; Ali, T.; Hussain, S., et al.: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19. Int. J. Environ. Res. Public Health 18, 3056 (2021)CrossRef Irfan, M.; Iftikhar, M.A.; Yasin, S.; Draz, U.; Ali, T.; Hussain, S., et al.: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19. Int. J. Environ. Res. Public Health 18, 3056 (2021)CrossRef
26.
go back to reference Kassani, S.H.; Kassasni, P.H.; Wesolowski, M.J.; Schneider, K.A.; Deters, R.: Automatic detection of coronavirus disease (covid-19) in x-ray and ct images: a machine learning-based approach. arXiv preprintarXiv:2004.10641 (2020) Kassani, S.H.; Kassasni, P.H.; Wesolowski, M.J.; Schneider, K.A.; Deters, R.: Automatic detection of coronavirus disease (covid-19) in x-ray and ct images: a machine learning-based approach. arXiv preprintarXiv:​2004.​10641 (2020)
27.
go back to reference Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.; Sadiq, A.S.; Khan, M.K.: Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint arXiv:2004.00038(2020) Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.; Sadiq, A.S.; Khan, M.K.: Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint arXiv:​2004.​00038(2020)
28.
go back to reference Wang, Z.; Liu, Q.; Dou, Q.: Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J. Biomed. Health Inform. 24, 2806–2813 (2020)CrossRef Wang, Z.; Liu, Q.; Dou, Q.: Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J. Biomed. Health Inform. 24, 2806–2813 (2020)CrossRef
29.
go back to reference Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M.: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn., pp. 1–8 (2020) Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M.: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn., pp. 1–8 (2020)
30.
go back to reference Hu, S.; Gao, Y.; Niu, Z.; Jiang, Y.; Li, L.; Xiao, X., et al.: Weakly supervised deep learning for covid-19 infection detection and classification from ct images. IEEE Access 8, 118869–118883 (2020)CrossRef Hu, S.; Gao, Y.; Niu, Z.; Jiang, Y.; Li, L.; Xiao, X., et al.: Weakly supervised deep learning for covid-19 infection detection and classification from ct images. IEEE Access 8, 118869–118883 (2020)CrossRef
31.
go back to reference Wu, Y.-H.; Gao, S.-H.; Mei, J.; Xu, J.; Fan, D.-P.; Zhao, C.-W., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint arXiv:2004.07054(2020) Wu, Y.-H.; Gao, S.-H.; Mei, J.; Xu, J.; Fan, D.-P.; Zhao, C.-W., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint arXiv:​2004.​07054(2020)
32.
go back to reference Sun, L.; Mo, Z.; Yan, F.; Xia, L.; Shan, F.; Ding, Z., et al.: Adaptive feature selection guided deep forest for covid-19 classification with chest ct. IEEE J. Biomed. Health Inform. 24, 2798–2805 (2020)CrossRef Sun, L.; Mo, Z.; Yan, F.; Xia, L.; Shan, F.; Ding, Z., et al.: Adaptive feature selection guided deep forest for covid-19 classification with chest ct. IEEE J. Biomed. Health Inform. 24, 2798–2805 (2020)CrossRef
33.
go back to reference Mishra, N.K.; Singh, P.; Joshi, S.D.: Automated detection of COVID-19 from CT scan using convolutional neural network. Biocybern. Biomed. Eng. (2021) Mishra, N.K.; Singh, P.; Joshi, S.D.: Automated detection of COVID-19 from CT scan using convolutional neural network. Biocybern. Biomed. Eng. (2021)
34.
go back to reference Brunese, L.; Martinelli, F.; Mercaldo, F.; Santone, A.: Machine learning for coronavirus COVID-19 detection from chest x-rays. Procedia Comput. Sci. 176, 2212–2221 (2020)CrossRef Brunese, L.; Martinelli, F.; Mercaldo, F.; Santone, A.: Machine learning for coronavirus COVID-19 detection from chest x-rays. Procedia Comput. Sci. 176, 2212–2221 (2020)CrossRef
35.
go back to reference Barstugan, M.; Ozkaya, U.; Ozturk, S.: Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint arXiv:2003.09424(2020) Barstugan, M.; Ozkaya, U.; Ozturk, S.: Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint arXiv:​2003.​09424(2020)
36.
go back to reference Mohammed, M.A.; Abdulkareem, K.H.; Garcia-Zapirain, B.; Mostafa, S.A.; Maashi, M.S.; Al-Waisy, A.S., et al.: A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of covid-19 based on x-ray images. Comput. Mater. Contin. 66 (2020) Mohammed, M.A.; Abdulkareem, K.H.; Garcia-Zapirain, B.; Mostafa, S.A.; Maashi, M.S.; Al-Waisy, A.S., et al.: A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of covid-19 based on x-ray images. Comput. Mater. Contin. 66 (2020)
37.
go back to reference Khan, N.; Ullah, F.; Hassan, M.A.; Hussain, A.: COVID-19 classification based on Chest X-Ray images using machine learning techniques. J. Comput. Sci. Technol. Stud. 2, 01–11 (2020) Khan, N.; Ullah, F.; Hassan, M.A.; Hussain, A.: COVID-19 classification based on Chest X-Ray images using machine learning techniques. J. Comput. Sci. Technol. Stud. 2, 01–11 (2020)
38.
go back to reference Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie, P.: COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint arXiv:2003.13865(2020) Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie, P.: COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint arXiv:​2003.​13865(2020)
39.
go back to reference Lim, J.S.; Oppenheim, A.V.: Enhancement and bandwidth compression of noisy speech. Proc. IEEE 67, 1586–1604 (1979)CrossRef Lim, J.S.; Oppenheim, A.V.: Enhancement and bandwidth compression of noisy speech. Proc. IEEE 67, 1586–1604 (1979)CrossRef
40.
go back to reference Dalal, N.; Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp. 886–893 (2005) Dalal, N.; Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp. 886–893 (2005)
41.
go back to reference Arya, S.; Mount, D.M.; Netanyahu, N.S.; Silverman, R.; Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. JACM 45, 891–923 (1998)MathSciNetCrossRef Arya, S.; Mount, D.M.; Netanyahu, N.S.; Silverman, R.; Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. JACM 45, 891–923 (1998)MathSciNetCrossRef
42.
go back to reference Glowacz, A.: Ventilation diagnosis of angle grinder using thermal imaging. Sensors 21, 2853 (2021)CrossRef Glowacz, A.: Ventilation diagnosis of angle grinder using thermal imaging. Sensors 21, 2853 (2021)CrossRef
43.
go back to reference Barandela, R.; Valdovinos, R.M.; Sánchez, J.S.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6, 245–256 (2003)MathSciNetCrossRef Barandela, R.; Valdovinos, R.M.; Sánchez, J.S.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6, 245–256 (2003)MathSciNetCrossRef
44.
go back to reference Opitz, D.; Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)CrossRef Opitz, D.; Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)CrossRef
45.
go back to reference Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: ICML, pp. 37–45 (1998) Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: ICML, pp. 37–45 (1998)
46.
go back to reference Ashour, A.S.; Guo, Y.; Hawas, A.R.; Xu, G.: Ensemble of subspace discriminant classifiers for schistosomal liver fibrosis staging in mice microscopic images. Health Inf. Sci. Syst. 6, 1–10 (2018)CrossRef Ashour, A.S.; Guo, Y.; Hawas, A.R.; Xu, G.: Ensemble of subspace discriminant classifiers for schistosomal liver fibrosis staging in mice microscopic images. Health Inf. Sci. Syst. 6, 1–10 (2018)CrossRef
47.
go back to reference Kuncheva, L.I.; Rodríguez, J.J.; Plumpton, C.O.; Linden, D.E.; Johnston, S.J.: Random subspace ensembles for fMRI classification. IEEE Trans. Med. Imaging 29, 531–542 (2010)CrossRef Kuncheva, L.I.; Rodríguez, J.J.; Plumpton, C.O.; Linden, D.E.; Johnston, S.J.: Random subspace ensembles for fMRI classification. IEEE Trans. Med. Imaging 29, 531–542 (2010)CrossRef
48.
go back to reference Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46 (2001) Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46 (2001)
49.
go back to reference Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006)CrossRef Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006)CrossRef
50.
go back to reference Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26, 1–16 (2006) Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26, 1–16 (2006)
51.
go back to reference Schölkopf, B.; Smola, A.J.; Bach, F.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002) Schölkopf, B.; Smola, A.J.; Bach, F.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
52.
go back to reference Hussain, M.; Wajid, S.K.; Elzaart, A.; Berbar, M.: A comparison of SVM kernel functions for breast cancer detection. In: 2011 Eighth International Conference Computer Graphics, Imaging and Visualization, pp. 145–150 (2011) Hussain, M.; Wajid, S.K.; Elzaart, A.; Berbar, M.: A comparison of SVM kernel functions for breast cancer detection. In: 2011 Eighth International Conference Computer Graphics, Imaging and Visualization, pp. 145–150 (2011)
53.
go back to reference Šimundić, A.-M.: Measures of diagnostic accuracy: basic definitions. EJIFCC 19, 203–211 (2009) Šimundić, A.-M.: Measures of diagnostic accuracy: basic definitions. EJIFCC 19, 203–211 (2009)
54.
go back to reference van Stralen, K.J.; Stel, V.S.; Reitsma, J.B.; Dekker, F.W.; Zoccali, C.; Jager, K.J.: Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75, 1257–1263 (2009)CrossRef van Stralen, K.J.; Stel, V.S.; Reitsma, J.B.; Dekker, F.W.; Zoccali, C.; Jager, K.J.: Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75, 1257–1263 (2009)CrossRef
55.
go back to reference Coulthard, M.G.: Quantifying how tests reduce diagnostic uncertainty. Arch. Dis. Child. 92, 404–408 (2007)CrossRef Coulthard, M.G.: Quantifying how tests reduce diagnostic uncertainty. Arch. Dis. Child. 92, 404–408 (2007)CrossRef
56.
go back to reference Boughorbel, S.; Jarray, F.; El-Anbari, M.: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 12, e0177678 (2017)CrossRef Boughorbel, S.; Jarray, F.; El-Anbari, M.: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 12, e0177678 (2017)CrossRef
57.
go back to reference Khan, K.B.; Siddique, M.S.; Ahmad, M.; Mazzara, M.: A hybrid unsupervised approach for retinal vessel segmentation. BioMed Res. Int. 2020 (2020) Khan, K.B.; Siddique, M.S.; Ahmad, M.; Mazzara, M.: A hybrid unsupervised approach for retinal vessel segmentation. BioMed Res. Int. 2020 (2020)
58.
go back to reference Fan, J.; Upadhye, S.; Worster, A.: Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 8, 19–20 (2006)CrossRef Fan, J.; Upadhye, S.; Worster, A.: Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 8, 19–20 (2006)CrossRef
Metadata
Title
Computer-Aided Detection of COVID-19 from CT Images Based on Gaussian Mixture Model and Kernel Support Vector Machines Classifier
Author
Ahmet Saygılı
Publication date
07-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06240-z

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

A Two-stage Method of Synchronization Prediction Framework in TDD

Research Article-Computer Engineering and Computer Science

A New Ensemble-Based Intrusion Detection System for Internet of Things

Premium Partners