Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 9/2018

23-05-2018 | Original Article

Computer-assisted liver graft steatosis assessment via learning-based texture analysis

Authors: Sara Moccia, Leonardo S. Mattos, Ilaria Patrini, Michela Ruperti, Nicolas Poté, Federica Dondero, François Cauchy, Ailton Sepulveda, Olivier Soubrane, Elena De Momi, Alberto Diaspro, Manuela Cesaretti

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process.

Methods

Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen randomly selected liver patches were extracted from each image. Patch size was \(100\times 100\). This way, a balanced dataset of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern (\(H_{{\mathrm{LBP}}_{riu2}}\)), and gray-level co-occurrence matrix (\(F_{\mathrm{GLCM}}\)) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation was performed to estimate the classification performance.

Results

With the best-performing feature set (\(H_{{\mathrm{LBP}}_{riu2}}+\hbox {INT}+\hbox {Blo}\)) and semisupervised learning, the achieved classification sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively.

Conclusions

This research represents the first attempt to use machine learning and automatic texture analysis of RGB images from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to develop a fully automatic solution to assist surgeons in HS assessment inside the OR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhati C, Silva M, Wigmore S, Bramhall S, Mayer D, Buckels J, Neil D, Murphy N, Mirza D (2009) Use of bioelectrical impedance analysis to assess liver steatosis. In: Transplantation proceedings, vol 41. Elsevier, Amsterdam, pp 1677–1681 Bhati C, Silva M, Wigmore S, Bramhall S, Mayer D, Buckels J, Neil D, Murphy N, Mirza D (2009) Use of bioelectrical impedance analysis to assess liver steatosis. In: Transplantation proceedings, vol 41. Elsevier, Amsterdam, pp 1677–1681
3.
go back to reference Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef
4.
go back to reference Chen CL, Fan ST, Lee SG, Makuuchi M, Tanaka K (2003) Living-donor liver transplantation: 12 years of experience in Asia. Transplantation 75(3):S6–S11CrossRefPubMed Chen CL, Fan ST, Lee SG, Makuuchi M, Tanaka K (2003) Living-donor liver transplantation: 12 years of experience in Asia. Transplantation 75(3):S6–S11CrossRefPubMed
5.
go back to reference Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, Prague, vol 1, pp 1–2 Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, Prague, vol 1, pp 1–2
6.
go back to reference D’alessandro AM, Kalayoglu M, Sollinger HW, Hoffmann RM, Reed A, Knechtle SJ, Pirsch JD, Hafez GR, Lorentzen D, Belzer FO (1991) The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation. Transplantation 51(1):157–163CrossRefPubMed D’alessandro AM, Kalayoglu M, Sollinger HW, Hoffmann RM, Reed A, Knechtle SJ, Pirsch JD, Hafez GR, Lorentzen D, Belzer FO (1991) The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation. Transplantation 51(1):157–163CrossRefPubMed
7.
go back to reference Duro DC, Franklin SE, Dubé MG (2012) A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens Environ 118:259–272CrossRef Duro DC, Franklin SE, Dubé MG (2012) A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens Environ 118:259–272CrossRef
8.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMed Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMed
9.
go back to reference Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN (2016) Quantification of liver fat: a comprehensive review. Comput Biol Med 71:174–189CrossRefPubMed Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN (2016) Quantification of liver fat: a comprehensive review. Comput Biol Med 71:174–189CrossRefPubMed
10.
go back to reference Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRef Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRef
11.
go back to reference Hewitt KC, Rad JG, McGregor HC, Brouwers E, Sapp H, Short MA, Fashir SB, Zeng H, Alwayn IP (2015) Accurate assessment of liver steatosis in animal models using a high throughput Raman fiber optic probe. Analyst 140(19):6602–6609CrossRefPubMed Hewitt KC, Rad JG, McGregor HC, Brouwers E, Sapp H, Short MA, Fashir SB, Zeng H, Alwayn IP (2015) Accurate assessment of liver steatosis in animal models using a high throughput Raman fiber optic probe. Analyst 140(19):6602–6609CrossRefPubMed
12.
go back to reference Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, Montreal, Canada, vol 14, pp 1137–1145 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, Montreal, Canada, vol 14, pp 1137–1145
13.
go back to reference Koneru B, Dikdan G (2002) Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 73(3):325–330CrossRefPubMed Koneru B, Dikdan G (2002) Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 73(3):325–330CrossRefPubMed
14.
go back to reference Lechaux D, Dupont-Bierre E, Karam G, Corbineau H, Compagnon P, Noury D, Boudjema K (2004) Technique du prélèvement multiorganes: cœur-foie-reins. In: Annales de Chirurgie, vol 129. Elsevier, Amsterdam, pp 103–113 Lechaux D, Dupont-Bierre E, Karam G, Corbineau H, Compagnon P, Noury D, Boudjema K (2004) Technique du prélèvement multiorganes: cœur-foie-reins. In: Annales de Chirurgie, vol 129. Elsevier, Amsterdam, pp 103–113
15.
go back to reference Li B, Meng MQH (2009) Texture analysis for ulcer detection in capsule endoscopy images. Image Vis Comput 27(9):1336–1342CrossRef Li B, Meng MQH (2009) Texture analysis for ulcer detection in capsule endoscopy images. Image Vis Comput 27(9):1336–1342CrossRef
16.
go back to reference Liang P, Cong Y, Guan M (2012) A computer-aided lesion diagnose method based on gastroscopeimage. In: 2012 International conference on information and automation. IEEE, pp 871–875 Liang P, Cong Y, Guan M (2012) A computer-aided lesion diagnose method based on gastroscopeimage. In: 2012 International conference on information and automation. IEEE, pp 871–875
17.
go back to reference Lin Y, Lv F, Zhu S, Yang M, Cour T, Yu K, Cao L, Huang T (2011) Large-scale image classification: fast feature extraction and SVM training. In: 2011 IEEE conference on computer vision and pattern recognition. IEEE, pp 1689–1696 Lin Y, Lv F, Zhu S, Yang M, Cour T, Yu K, Cao L, Huang T (2011) Large-scale image classification: fast feature extraction and SVM training. In: 2011 IEEE conference on computer vision and pattern recognition. IEEE, pp 1689–1696
18.
go back to reference Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, Marz K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691CrossRef Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, Marz K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691CrossRef
19.
go back to reference Mancia C, Loustaud-Ratti V, Carrier P, Naudet F, Bellissant E, Labrousse F, Pichon N (2015) Controlled attenuation parameter and liver stiffness measurements for steatosis assessment in the liver transplant of brain dead donors. Transplantation 99(8):1619–1624CrossRefPubMed Mancia C, Loustaud-Ratti V, Carrier P, Naudet F, Bellissant E, Labrousse F, Pichon N (2015) Controlled attenuation parameter and liver stiffness measurements for steatosis assessment in the liver transplant of brain dead donors. Transplantation 99(8):1619–1624CrossRefPubMed
20.
go back to reference Marsman WA, Wiesner RH, Rodriguez L, Batts KP, Porayko MK, Hay JE, Gores GJ, Krom RA (1996) Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation 62(9):1246–1251CrossRefPubMed Marsman WA, Wiesner RH, Rodriguez L, Batts KP, Porayko MK, Hay JE, Gores GJ, Krom RA (1996) Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation 62(9):1246–1251CrossRefPubMed
21.
go back to reference Misawa M, Se Kudo, Mori Y, Takeda K, Maeda Y, Kataoka S, Nakamura H, Kudo T, Wakamura K, Hayashi T, Katagiri A, Baba T, Ishida F, Inoue H, Nimura Y, Oda M, Mori K (2017) Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. Int J Comput Assist Radiol Surg 12:1–10CrossRef Misawa M, Se Kudo, Mori Y, Takeda K, Maeda Y, Kataoka S, Nakamura H, Kudo T, Wakamura K, Hayashi T, Katagiri A, Baba T, Ishida F, Inoue H, Nimura Y, Oda M, Mori K (2017) Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. Int J Comput Assist Radiol Surg 12:1–10CrossRef
22.
go back to reference Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A, Guastini L, Peretti G, Mattos LS (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502CrossRef Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A, Guastini L, Peretti G, Mattos LS (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502CrossRef
24.
go back to reference Mor E, Klintmalm GB, Gonwa TA, Solomon H, Holman MJ, Gibbs JF, Watemberg I, Goldstein RM, Husberg BS (1992) The use of marginal donors for liver transplantation. A retrospective study of 365 liver donors. Transplantation 53(2):383–386CrossRefPubMed Mor E, Klintmalm GB, Gonwa TA, Solomon H, Holman MJ, Gibbs JF, Watemberg I, Goldstein RM, Husberg BS (1992) The use of marginal donors for liver transplantation. A retrospective study of 365 liver donors. Transplantation 53(2):383–386CrossRefPubMed
25.
go back to reference Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRef Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRef
26.
go back to reference Qayyum A, Nystrom M, Noworolski SM, Chu P, Mohanty A, Merriman R (2012) MRI steatosis grading: development and initial validation of a color mapping system. Am J Roentgenol 198(3):582–588CrossRef Qayyum A, Nystrom M, Noworolski SM, Chu P, Mohanty A, Merriman R (2012) MRI steatosis grading: development and initial validation of a color mapping system. Am J Roentgenol 198(3):582–588CrossRef
27.
go back to reference Quellec G, Cazuguel G, Cochener B, Lamard M (2017) Multiple-instance learning for medical image and video analysis. IEEE Rev Biomed Eng 10:213–234CrossRefPubMed Quellec G, Cazuguel G, Cochener B, Lamard M (2017) Multiple-instance learning for medical image and video analysis. IEEE Rev Biomed Eng 10:213–234CrossRefPubMed
28.
go back to reference Rogier J, Roullet S, Cornélis F, Biais M, Quinart A, Revel P, Bioulac-Sage P, Le Bail B (2015) Noninvasive assessment of macrovesicular liver steatosis in cadaveric donors based on computed tomography liver-to-spleen attenuation ratio. Liver Transplant 21(5):690–695CrossRef Rogier J, Roullet S, Cornélis F, Biais M, Quinart A, Revel P, Bioulac-Sage P, Le Bail B (2015) Noninvasive assessment of macrovesicular liver steatosis in cadaveric donors based on computed tomography liver-to-spleen attenuation ratio. Liver Transplant 21(5):690–695CrossRef
29.
go back to reference Selzner M, Clavien PA (2001) Fatty liver in liver transplantation and surgery. In: Seminars in liver disease, Copyright\(\copyright \) 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.:+ 1 (212) 584-4662, vol 21, pp 105–114 Selzner M, Clavien PA (2001) Fatty liver in liver transplantation and surgery. In: Seminars in liver disease, Copyright\(\copyright \) 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.:+ 1 (212) 584-4662, vol 21, pp 105–114
30.
go back to reference Shen X, Sun K, Zhang S, Cheng S (2012) Lesion detection of electronic gastroscope images based on multiscale texture feature. In: 2012 IEEE international conference on signal processing, communication and computing (ICSPCC). IEEE, pp 756–759 Shen X, Sun K, Zhang S, Cheng S (2012) Lesion detection of electronic gastroscope images based on multiscale texture feature. In: 2012 IEEE international conference on signal processing, communication and computing (ICSPCC). IEEE, pp 756–759
31.
go back to reference Yersiz H, Lee C, Kaldas FM, Hong JC, Rana A, Schnickel GT, Wertheim JA, Zarrinpar A, Agopian VG, Gornbein J, Naini BV, Lassman CR, Busuttil RW, Petrowsky H (2013) Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transplant 19(4):437–449CrossRef Yersiz H, Lee C, Kaldas FM, Hong JC, Rana A, Schnickel GT, Wertheim JA, Zarrinpar A, Agopian VG, Gornbein J, Naini BV, Lassman CR, Busuttil RW, Petrowsky H (2013) Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transplant 19(4):437–449CrossRef
32.
go back to reference Zhang Y, Wirkert SJ, Iszatt J, Kenngott H, Wagner M, Mayer B, Stock C, Clancy NT, Elson DS, Maier-Hein L (2017) Tissue classification for laparoscopic image understanding based on multispectral texture analysis. J Med Imaging 4(1):015001CrossRef Zhang Y, Wirkert SJ, Iszatt J, Kenngott H, Wagner M, Mayer B, Stock C, Clancy NT, Elson DS, Maier-Hein L (2017) Tissue classification for laparoscopic image understanding based on multispectral texture analysis. J Med Imaging 4(1):015001CrossRef
Metadata
Title
Computer-assisted liver graft steatosis assessment via learning-based texture analysis
Authors
Sara Moccia
Leonardo S. Mattos
Ilaria Patrini
Michela Ruperti
Nicolas Poté
Federica Dondero
François Cauchy
Ailton Sepulveda
Olivier Soubrane
Elena De Momi
Alberto Diaspro
Manuela Cesaretti
Publication date
23-05-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 9/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1787-6

Other articles of this Issue 9/2018

International Journal of Computer Assisted Radiology and Surgery 9/2018 Go to the issue

Premium Partner