Skip to main content
Top
Published in: The Journal of Supercomputing 4/2023

27-09-2022

Computer vision-based deep learning for supervising excavator operations and measuring real-time earthwork productivity

Authors: Min-Yuan Cheng, Minh-Tu Cao, Christian Kentaro Nuralim

Published in: The Journal of Supercomputing | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Its significant influence on overall progress makes excavator productivity a major concern of construction project managers, particularly during initial-stage earthwork activities. The ability to track excavator performance autonomously in real time is essential to monitoring and managing earthwork effectively. A novel, vision-based autonomous excavator action recognition and productivity measurement is introduced in this study that integrates the you only watch once deep learning method to recognize excavator actions, which are used to calculate action time and average cycle time. The average cycle time is then used to calculate the productivity of excavation work. The images of the excavator action used to construct the model were extracted from a video recorded at the construction site. The algorithm recognized excavator actions with an F1 score of 87.6% and mAP value of 81.6%. The outputs were then used in the proposed framework to measure excavator productivity. Omitting the outliers/misclassifications (< 95% confidence) before calculating average action times was found to yield a cycle time accuracy (99.7%) that was significantly higher than that achieved using the unadjusted mean value (81.59%). The successful implementation of the proposed framework in this study demonstrates the feasibility of using the proposed autonomous productivity measurement in construction as a more economical, faster, and real-time measure of excavator productivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davila Delgado JM et al (2019) Robotics and automated systems in construction: understanding industry-specific challenges for adoption. J Build Eng 26:100868CrossRef Davila Delgado JM et al (2019) Robotics and automated systems in construction: understanding industry-specific challenges for adoption. J Build Eng 26:100868CrossRef
2.
go back to reference Luo M, Fan H, Liu G (2021) A target-oriented DEA model for regional construction productive efficiency improvement in China. Adv Eng Inform 47:101208CrossRef Luo M, Fan H, Liu G (2021) A target-oriented DEA model for regional construction productive efficiency improvement in China. Adv Eng Inform 47:101208CrossRef
3.
go back to reference Cheng M-Y, Cao M-T, JayaMendrofa AY (2021) Dynamic feature selection for accurately predicting construction productivity using symbiotic organisms search-optimized least square support vector machine. J Build Eng 35:101973CrossRef Cheng M-Y, Cao M-T, JayaMendrofa AY (2021) Dynamic feature selection for accurately predicting construction productivity using symbiotic organisms search-optimized least square support vector machine. J Build Eng 35:101973CrossRef
4.
go back to reference Durdyev S, Ismail S, Kandymov N (2018) Structural equation model of the factors affecting construction labor productivity. J Constr Eng Manag 144(4):04018007CrossRef Durdyev S, Ismail S, Kandymov N (2018) Structural equation model of the factors affecting construction labor productivity. J Constr Eng Manag 144(4):04018007CrossRef
5.
go back to reference Assaf SA, Al-Hejji S (2006) Causes of delay in large construction projects. Int J Project Manag 24(4):349–357CrossRef Assaf SA, Al-Hejji S (2006) Causes of delay in large construction projects. Int J Project Manag 24(4):349–357CrossRef
6.
go back to reference Sveikauskas L et al. (2016) Productivity growth in construction. J Constr Eng Manag 142(10):04016045CrossRef Sveikauskas L et al. (2016) Productivity growth in construction. J Constr Eng Manag 142(10):04016045CrossRef
7.
go back to reference Bankvall L et al (2010) Interdependence in supply chains and projects in construction. Supply Chain Manag 15(5):385–393CrossRef Bankvall L et al (2010) Interdependence in supply chains and projects in construction. Supply Chain Manag 15(5):385–393CrossRef
8.
go back to reference Timmer MP, Inklaar R, Mahony MO (2011) Productivity and economic growth in Europe: a comparative industry perspective. Int Product Monit 21:3–23 Timmer MP, Inklaar R, Mahony MO (2011) Productivity and economic growth in Europe: a comparative industry perspective. Int Product Monit 21:3–23
9.
go back to reference Tran V, Tookey J (2011) Labour productivity in the New Zealand construction industry: a thorough investigation. Australas J Constr Econ Build 11(1):41–60 Tran V, Tookey J (2011) Labour productivity in the New Zealand construction industry: a thorough investigation. Australas J Constr Econ Build 11(1):41–60
10.
go back to reference Li J, Greenwood D, Kassem M (2019) Blockchain in the built environment and construction industry: a systematic review, conceptual models and practical use cases. Autom Constr 102:288–307CrossRef Li J, Greenwood D, Kassem M (2019) Blockchain in the built environment and construction industry: a systematic review, conceptual models and practical use cases. Autom Constr 102:288–307CrossRef
11.
go back to reference Lentini V, Castelli F (2019) Numerical modelling and experimental monitoring of a full-scale diaphragm wall. Int J Civil Eng 17(6):659–672CrossRef Lentini V, Castelli F (2019) Numerical modelling and experimental monitoring of a full-scale diaphragm wall. Int J Civil Eng 17(6):659–672CrossRef
12.
go back to reference Langroodi AK, Vahdatikhaki F, Doree A (2021) Activity recognition of construction equipment using fractional random forest. Autom Constr 122:103465CrossRef Langroodi AK, Vahdatikhaki F, Doree A (2021) Activity recognition of construction equipment using fractional random forest. Autom Constr 122:103465CrossRef
13.
go back to reference Jiang F et al (2022) Application of canny operator threshold adaptive segmentation algorithm combined with digital image processing in tunnel face crevice extraction. J Supercomput 78:11601–11620CrossRef Jiang F et al (2022) Application of canny operator threshold adaptive segmentation algorithm combined with digital image processing in tunnel face crevice extraction. J Supercomput 78:11601–11620CrossRef
14.
go back to reference Tamilarasi R, Prabu S (2021) Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine. J Supercomput 77(11):13243–13261CrossRef Tamilarasi R, Prabu S (2021) Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine. J Supercomput 77(11):13243–13261CrossRef
15.
go back to reference Nikose TJ, Sonparote RS (2020) Computing dynamic across-wind response of tall buildings using artificial neural network. J Supercomput 76(5):3788–3813CrossRef Nikose TJ, Sonparote RS (2020) Computing dynamic across-wind response of tall buildings using artificial neural network. J Supercomput 76(5):3788–3813CrossRef
16.
go back to reference Doghri W, Saddoud A, ChaariFourati L (2022) Cyber-physical systems for structural health monitoring: sensing technologies and intelligent computing. J Supercomput 78(1):766–809CrossRef Doghri W, Saddoud A, ChaariFourati L (2022) Cyber-physical systems for structural health monitoring: sensing technologies and intelligent computing. J Supercomput 78(1):766–809CrossRef
17.
go back to reference Fang W et al (2017) Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach. Adv Eng Inform 2018(37):139–149 Fang W et al (2017) Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach. Adv Eng Inform 2018(37):139–149
18.
go back to reference Kim H et al (2018) Detecting construction equipment using a region-based fully convolutional network and transfer learning. J Comput Civ Eng 32(2):1–15CrossRef Kim H et al (2018) Detecting construction equipment using a region-based fully convolutional network and transfer learning. J Comput Civ Eng 32(2):1–15CrossRef
19.
go back to reference Arif F, Khan WA (2021) Smart progress monitoring framework for building construction elements using videography–MATLAB–BIM integration. Int J Civ Eng 19(6):717–732CrossRef Arif F, Khan WA (2021) Smart progress monitoring framework for building construction elements using videography–MATLAB–BIM integration. Int J Civ Eng 19(6):717–732CrossRef
20.
go back to reference Golparvar-Fard M, Heydarian A, Niebles JC (2013) Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Adv Eng Inform 27(4):652–663CrossRef Golparvar-Fard M, Heydarian A, Niebles JC (2013) Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Adv Eng Inform 27(4):652–663CrossRef
21.
go back to reference Gong J, Caldas CH, Gordon C (2011) Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models. Adv Eng Inform 25(4):771–782CrossRef Gong J, Caldas CH, Gordon C (2011) Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models. Adv Eng Inform 25(4):771–782CrossRef
22.
go back to reference Rezazadeh Azar E, Dickinson S, McCabe B (2013) Server-customer interaction tracker: computer vision-based system to estimate dirt-loading cycles. J Constr Eng Manag 139(7):785–794CrossRef Rezazadeh Azar E, Dickinson S, McCabe B (2013) Server-customer interaction tracker: computer vision-based system to estimate dirt-loading cycles. J Constr Eng Manag 139(7):785–794CrossRef
23.
go back to reference Kim J, Chi S, Seo J (2017) Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks. Autom Constr 2018(87):297–308 Kim J, Chi S, Seo J (2017) Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks. Autom Constr 2018(87):297–308
24.
go back to reference Roberts D, Golparvar-Fard M (2018) End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level. Autom Constr 2019(105):102811–102811 Roberts D, Golparvar-Fard M (2018) End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level. Autom Constr 2019(105):102811–102811
25.
go back to reference Kim J, Chi S (2019) Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles. Autom Constr 104(May):255–264CrossRef Kim J, Chi S (2019) Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles. Autom Constr 104(May):255–264CrossRef
26.
go back to reference Köpüklü O, Wei X, Rigoll G (2019) You only watch once: a unified CNN architecture for real-time spatiotemporal action localization, p 1–28 Köpüklü O, Wei X, Rigoll G (2019) You only watch once: a unified CNN architecture for real-time spatiotemporal action localization, p 1–28
27.
go back to reference Sherafat B et al (2019) A hybrid kinematic-acoustic system for automated activity detection of construction equipment. Sensors 19(19):4286CrossRef Sherafat B et al (2019) A hybrid kinematic-acoustic system for automated activity detection of construction equipment. Sensors 19(19):4286CrossRef
28.
go back to reference Rashid KM, Louis J (2020) Automated activity identification for construction equipment using motion data from articulated members. Front Built Environ 5:144CrossRef Rashid KM, Louis J (2020) Automated activity identification for construction equipment using motion data from articulated members. Front Built Environ 5:144CrossRef
29.
go back to reference Park MW, Makhmalbaf A, Brilakis I (2011) Comparative study of vision tracking methods for tracking of construction site resources. Autom Constr 20(7):905–915CrossRef Park MW, Makhmalbaf A, Brilakis I (2011) Comparative study of vision tracking methods for tracking of construction site resources. Autom Constr 20(7):905–915CrossRef
30.
go back to reference Xiao B, Lin Q, Chen Y (2021) A vision-based method for automatic tracking of construction machines at nighttime based on deep learning illumination enhancement. Autom Constr 127:103721CrossRef Xiao B, Lin Q, Chen Y (2021) A vision-based method for automatic tracking of construction machines at nighttime based on deep learning illumination enhancement. Autom Constr 127:103721CrossRef
31.
go back to reference Cao J et al (2017) Excavation equipment recognition based on novel acoustic statistical features. IEEE Trans Cybern 47(12):4392–4404CrossRef Cao J et al (2017) Excavation equipment recognition based on novel acoustic statistical features. IEEE Trans Cybern 47(12):4392–4404CrossRef
32.
go back to reference Rashid KM, Louis J (2019) Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inform 42:100944CrossRef Rashid KM, Louis J (2019) Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inform 42:100944CrossRef
33.
go back to reference Chen C, Zhu Z, Hammad A (2020) Automated excavators activity recognition and productivity analysis from construction site surveillance videos. Autom Constr 110:103045CrossRef Chen C, Zhu Z, Hammad A (2020) Automated excavators activity recognition and productivity analysis from construction site surveillance videos. Autom Constr 110:103045CrossRef
34.
go back to reference Ji S et al (2013) 3D Convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRef Ji S et al (2013) 3D Convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRef
35.
go back to reference Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017. 2017-Janua, pp 6517–6525 Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017. 2017-Janua, pp 6517–6525
36.
go back to reference Arcos-García Á, Álvarez-García JA, Soria-Morillo LM (2018) Evaluation of deep neural networks for traffic sign detection systems. Neurocomputing 316:332–344CrossRef Arcos-García Á, Álvarez-García JA, Soria-Morillo LM (2018) Evaluation of deep neural networks for traffic sign detection systems. Neurocomputing 316:332–344CrossRef
37.
go back to reference Köpüklü O et al (2019) Resource efficient 3D convolutional neural networks Köpüklü O et al (2019) Resource efficient 3D convolutional neural networks
38.
go back to reference Zhang X et al (2018) ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6848–6856 Zhang X et al (2018) ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6848–6856
39.
go back to reference Ma N et al. Shufflenet V2: practical guidelines for efficient CNN architecture design. Ma N et al. Shufflenet V2: practical guidelines for efficient CNN architecture design.
40.
go back to reference Sasaki Y (2007) The truth of the F-measure. Teach Tutor mater, p 1–5 Sasaki Y (2007) The truth of the F-measure. Teach Tutor mater, p 1–5
41.
go back to reference Chen WF, Liew R (2002) The civil engineering handbook Chen WF, Liew R (2002) The civil engineering handbook
42.
go back to reference Paszke A et al (2019) PyTorch: an imperative style, high-performance deep learning library. (NeurIPS) Paszke A et al (2019) PyTorch: an imperative style, high-performance deep learning library. (NeurIPS)
Metadata
Title
Computer vision-based deep learning for supervising excavator operations and measuring real-time earthwork productivity
Authors
Min-Yuan Cheng
Minh-Tu Cao
Christian Kentaro Nuralim
Publication date
27-09-2022
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 4/2023
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-022-04803-x

Other articles of this Issue 4/2023

The Journal of Supercomputing 4/2023 Go to the issue

Premium Partner