Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Conductive AFM for Nanoscale Analysis of High-k Dielectric Metal Oxides

Authors : Christian Rodenbücher, Marcin Wojtyniak, Kristof Szot

Published in: Electrical Atomic Force Microscopy for Nanoelectronics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conductive atomic force microscopy has become a valuable tool for investigation of electronic transport properties with utmost lateral resolution. In this chapter, we prevent an overview about C-AFM applications to high-k semiconductors, which are key materials for future energy-efficient information technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference M. Lanza, Conductive Atomic Force Microscopy : Applications in Nanomaterials (Wiley-VCH, 2017) M. Lanza, Conductive Atomic Force Microscopy : Applications in Nanomaterials (Wiley-VCH, 2017)
4.
go back to reference C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices (2000) C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices (2000)
8.
go back to reference M. Basletic, J.-L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, É. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy, Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater. 7, 621–625 (2008). https://doi.org/10.1038/nmat2223ADSCrossRef M. Basletic, J.-L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, É. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy, Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater. 7, 621–625 (2008). https://​doi.​org/​10.​1038/​nmat2223ADSCrossRef
11.
12.
go back to reference M. Lorenz, M.S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F.K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. Dasgupta, D.J. Rogers, F.H. Teherani, E.V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N.A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, N. Pryds, The 2016 oxide electronic materials and oxide interfaces roadmap (2016) M. Lorenz, M.S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F.K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. Dasgupta, D.J. Rogers, F.H. Teherani, E.V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N.A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, N. Pryds, The 2016 oxide electronic materials and oxide interfaces roadmap (2016)
14.
go back to reference D. Ielmini, R. Waser, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications D. Ielmini, R. Waser, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
17.
go back to reference A. Parkhi, T.S. Gross, Impact of I-V behavior and estimated temperature rise on surface and tip modification of the nanocontact between a highly doped silicon scanning probe microscope tip and gold surface under ambient conditions. J. Appl. Phys. 109, 014323 (2011). https://doi.org/10.1063/1.3531545ADSCrossRef A. Parkhi, T.S. Gross, Impact of I-V behavior and estimated temperature rise on surface and tip modification of the nanocontact between a highly doped silicon scanning probe microscope tip and gold surface under ambient conditions. J. Appl. Phys. 109, 014323 (2011). https://​doi.​org/​10.​1063/​1.​3531545ADSCrossRef
23.
go back to reference Tektronix: Low Level Measurements Handbook—7th Edition. (2014) Tektronix: Low Level Measurements Handbook—7th Edition. (2014)
26.
go back to reference J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (2009) J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (2009)
27.
go back to reference M.S. Tyagi, Physics of Schottky barrier junctions, in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, (Springer US, Boston, MA, 1984), pp. 1–60 M.S. Tyagi, Physics of Schottky barrier junctions, in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, (Springer US, Boston, MA, 1984), pp. 1–60
28.
go back to reference R. Dalven, Physics of metal-semiconductor and metal-insulator-semiconductor junctions, in Introduction to Applied Solid State Physics, (Springer US, Boston, MA, 1980), pp. 109–125CrossRef R. Dalven, Physics of metal-semiconductor and metal-insulator-semiconductor junctions, in Introduction to Applied Solid State Physics, (Springer US, Boston, MA, 1980), pp. 109–125CrossRef
31.
go back to reference S. Kalinin, A. Gruverman, Scanning Probe Microscopy (Springer, New York, NY, 2007)CrossRef S. Kalinin, A. Gruverman, Scanning Probe Microscopy (Springer, New York, NY, 2007)CrossRef
32.
go back to reference R. Holm, E. Holm, Electric Contacts : Theory and Application (Springer-Verlag, 1967) R. Holm, E. Holm, Electric Contacts : Theory and Application (Springer-Verlag, 1967)
35.
go back to reference K. Szot, B. Reichenberg, F. Peter, R. Waser, S. Tiedke, Electrical characterization of perovskite nanostructures by SPM, in Scanning Probe Microscopy. (Springer, New York, NY, 2007), pp. 746–775 K. Szot, B. Reichenberg, F. Peter, R. Waser, S. Tiedke, Electrical characterization of perovskite nanostructures by SPM, in Scanning Probe Microscopy. (Springer, New York, NY, 2007), pp. 746–775
49.
go back to reference R. Waser, Nanoelectronics and Information Technology (2012) R. Waser, Nanoelectronics and Information Technology (2012)
50.
go back to reference C. Rodenbücher, M. Luysberg, A. Schwedt, V. Havel, F. Gunkel, J. Mayer, R. Waser, Homogeneity and variation of donor doping in Verneuil-grown SrTiO3: Nb single crystals. Sci. Rep. 6, 32250 (2016)ADSCrossRef C. Rodenbücher, M. Luysberg, A. Schwedt, V. Havel, F. Gunkel, J. Mayer, R. Waser, Homogeneity and variation of donor doping in Verneuil-grown SrTiO3: Nb single crystals. Sci. Rep. 6, 32250 (2016)ADSCrossRef
51.
go back to reference C. Rodenbücher, T. Gensch, W. Speier, U. Breuer, M. Pilch, H. Hardtdegen, M. Mikulics, E. Zych, R. Waser, K. Szot, Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy. Appl. Phys. Lett. 103, 162904 (2013)ADSCrossRef C. Rodenbücher, T. Gensch, W. Speier, U. Breuer, M. Pilch, H. Hardtdegen, M. Mikulics, E. Zych, R. Waser, K. Szot, Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy. Appl. Phys. Lett. 103, 162904 (2013)ADSCrossRef
52.
go back to reference A. Yanguas-Gil, Fundamentals of gas phase transport in nanostructured materials, in Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, and ALD (2017), pp. 39–67 A. Yanguas-Gil, Fundamentals of gas phase transport in nanostructured materials, in Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, and ALD (2017), pp. 39–67
54.
go back to reference V. Iglesias, M. Porti, M. Nafría, X. Aymerich, P. Dudek, G. Bersuker, Dielectric breakdown in polycrystalline hafnium oxide gate dielectrics investigated by conductive atomic force microscopy. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 01AB02 (2011). https://doi.org/10.1116/1.3532945CrossRef V. Iglesias, M. Porti, M. Nafría, X. Aymerich, P. Dudek, G. Bersuker, Dielectric breakdown in polycrystalline hafnium oxide gate dielectrics investigated by conductive atomic force microscopy. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 01AB02 (2011). https://​doi.​org/​10.​1116/​1.​3532945CrossRef
57.
go back to reference C. Rodenbücher, D. Wrana, P. Meuffels, M. Rogala, F. Krok, K. Szot, Electrical nanopatterning of TiO2 single crystal surfaces in situ via local resistance and potential switching. APL Mater. (2018) C. Rodenbücher, D. Wrana, P. Meuffels, M. Rogala, F. Krok, K. Szot, Electrical nanopatterning of TiO2 single crystal surfaces in situ via local resistance and potential switching. APL Mater. (2018)
58.
go back to reference D.M. Schaadt, E.T. Yu, V. Vaithyanathan, D.G. Schlom, Nanoscale current transport in epitaxial SrTiO3 on n + -Si investigated with conductive atomic force microscopy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22, 2030 (2004). https://doi.org/10.1116/1.1768529 D.M. Schaadt, E.T. Yu, V. Vaithyanathan, D.G. Schlom, Nanoscale current transport in epitaxial SrTiO3 on n + -Si investigated with conductive atomic force microscopy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22, 2030 (2004). https://​doi.​org/​10.​1116/​1.​1768529
61.
go back to reference K. Szot, G. Bihlmayer, W. Speier, Nature of the resistive switching phenomena in TiO2 and SrTiO3: origin of the reversible insulator–metal transition, in Solid State Physics, Vol 65, eds. by R.E. Camley, R.L. Stamps (Academic Press, 2014), pp. 353–559 K. Szot, G. Bihlmayer, W. Speier, Nature of the resistive switching phenomena in TiO2 and SrTiO3: origin of the reversible insulator–metal transition, in Solid State Physics, Vol 65, eds. by R.E. Camley, R.L. Stamps (Academic Press, 2014), pp. 353–559
62.
go back to reference D. Wrana, C. Rodenbücher, M. Krawiec, B.R. Jany, J. Rysz, M. Ermrich, K. Szot, F. Krok, Tuning the surface structure and conductivity of niobium-doped rutile TiO2 single crystals via thermal reduction. Phys. Chem. Chem. Phys. 19, 30339–30350 (2017). https://doi.org/10.1039/C7CP03136JCrossRef D. Wrana, C. Rodenbücher, M. Krawiec, B.R. Jany, J. Rysz, M. Ermrich, K. Szot, F. Krok, Tuning the surface structure and conductivity of niobium-doped rutile TiO2 single crystals via thermal reduction. Phys. Chem. Chem. Phys. 19, 30339–30350 (2017). https://​doi.​org/​10.​1039/​C7CP03136JCrossRef
65.
go back to reference G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, A. Fert, High Mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007). https://doi.org/10.1103/physrevlett.98.216803 G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, A. Fert, High Mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007). https://​doi.​org/​10.​1103/​physrevlett.​98.​216803
68.
go back to reference A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhés, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le F́vre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature. 469, 189–194 (2011). https://doi.org/10.1038/nature09720ADSCrossRef A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhés, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le F́vre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature. 469, 189–194 (2011). https://​doi.​org/​10.​1038/​nature09720ADSCrossRef
71.
Metadata
Title
Conductive AFM for Nanoscale Analysis of High-k Dielectric Metal Oxides
Authors
Christian Rodenbücher
Marcin Wojtyniak
Kristof Szot
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15612-1_2