Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. The Atomic Force Microscopy for Nanoelectronics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The invention of scanning tunneling microscopy (STM), rapidly followed by atomic force microscopy (AFM), occurred at the time when extensive research on sub-µm metal oxide field-effect transistors (MOSFET) was beginning. Apparently uncorrelated, these events have positively influenced one another. In fact, ultra-scaled semiconductor devices required nanometer control of the surface quality, and the newborn microscopy techniques provided unprecedented sensing capability at the atomic scale. This alliance opened new horizons for materials characterization and continues to this day, with AFM representing one of the most popular analysis techniques in nanoelectronics. This book discusses how the introduction of new devices benefited from AFM, while driving the analysis and sensing capabilities in novel directions. Here, the goal is to introduce the major electrical AFM methods, going through the journey that has seen our life changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)ADSCrossRef G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)ADSCrossRef
2.
go back to reference Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723–4729 (1987)ADSCrossRef Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723–4729 (1987)ADSCrossRef
3.
go back to reference G.M. McClelland, R. Erlandsson, S. Chiang, Review of progress in quantitative non-destructive evaluation. Rev. Prog. Quant. Non-Destructive Eval. 6 B, 1307–1314 (1987)CrossRef G.M. McClelland, R. Erlandsson, S. Chiang, Review of progress in quantitative non-destructive evaluation. Rev. Prog. Quant. Non-Destructive Eval. 6 B, 1307–1314 (1987)CrossRef
4.
go back to reference G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988)ADSCrossRef G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988)ADSCrossRef
5.
go back to reference F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)ADSCrossRef F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)ADSCrossRef
6.
go back to reference G. Binnig, R. Heinrich, W. Pauli, The scanning tunneling microscope. Sci. Am. 253, 50–56 (1985)CrossRef G. Binnig, R. Heinrich, W. Pauli, The scanning tunneling microscope. Sci. Am. 253, 50–56 (1985)CrossRef
7.
go back to reference B. Voigtlaender, Scanning Probe Microscopy (Springer, Berlin, 2015) B. Voigtlaender, Scanning Probe Microscopy (Springer, Berlin, 2015)
8.
go back to reference P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010) P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)
9.
go back to reference S.K. Kulkarni, Nanotechnology : Principles and Practices (Springer, Berlin, 2014) S.K. Kulkarni, Nanotechnology : Principles and Practices (Springer, Berlin, 2014)
10.
go back to reference G. Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications (Wiley, New York, 2012) G. Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications (Wiley, New York, 2012)
12.
go back to reference G. Binnig, H. Rohrer, In touch with atoms. Rev. Mod. Phys. 71, S324–S330 (1999)CrossRef G. Binnig, H. Rohrer, In touch with atoms. Rev. Mod. Phys. 71, S324–S330 (1999)CrossRef
13.
go back to reference O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4, 803–810 (2009)ADSCrossRef O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4, 803–810 (2009)ADSCrossRef
14.
go back to reference J.Y. Park, S. Maier, B. Hendriksen, M. Salmeron, Sensing current and forces with SPM. Mater. Today 13, 38–45 (2010)CrossRef J.Y. Park, S. Maier, B. Hendriksen, M. Salmeron, Sensing current and forces with SPM. Mater. Today 13, 38–45 (2010)CrossRef
15.
go back to reference S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018)CrossRef S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018)CrossRef
16.
go back to reference N.G. Orji et al., Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018)CrossRef N.G. Orji et al., Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018)CrossRef
18.
go back to reference Y. Martin, D.W. Abraham, H.K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988)ADSCrossRef Y. Martin, D.W. Abraham, H.K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988)ADSCrossRef
19.
go back to reference H.J. Mamin, D. Rugar, J.E. Stern, B.D. Terris, S.E. Lambert, Force microscopy of magnetization patterns in longitudinal recording media. Appl. Phys. Lett. 53, 1563–1565 (1988)ADSCrossRef H.J. Mamin, D. Rugar, J.E. Stern, B.D. Terris, S.E. Lambert, Force microscopy of magnetization patterns in longitudinal recording media. Appl. Phys. Lett. 53, 1563–1565 (1988)ADSCrossRef
20.
go back to reference S. Xu, M.F. Arnsdorf, Electrostatic force microscope for probing surface charges in aqueous solutions. Proc. Natl. Acad. Sci. 92, 10384–10388 (1995)ADSCrossRef S. Xu, M.F. Arnsdorf, Electrostatic force microscope for probing surface charges in aqueous solutions. Proc. Natl. Acad. Sci. 92, 10384–10388 (1995)ADSCrossRef
21.
go back to reference M. Nonnenmacher, M. O’Boyle, H.K. Wickramasinghe, Surface investigations with a Kelvin probe force microscope. Ultramicroscopy 42–44, 268–273 (1992)CrossRef M. Nonnenmacher, M. O’Boyle, H.K. Wickramasinghe, Surface investigations with a Kelvin probe force microscope. Ultramicroscopy 42–44, 268–273 (1992)CrossRef
22.
23.
go back to reference W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)ADSCrossRef W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)ADSCrossRef
24.
go back to reference X. Li et al., Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Sci. Rep. 6, 22467 (2016)ADSCrossRef X. Li et al., Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Sci. Rep. 6, 22467 (2016)ADSCrossRef
25.
go back to reference W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure, US5369372A (1994) W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure, US5369372A (1994)
26.
go back to reference J.R. Matey, J. Blanc, Scanning capacitance microscopy. J. Appl. Phys. 57, 1437–1444 (1985)ADSCrossRef J.R. Matey, J. Blanc, Scanning capacitance microscopy. J. Appl. Phys. 57, 1437–1444 (1985)ADSCrossRef
27.
go back to reference A. Schulze, R. Cao, P. Eyben, T. Hantschel, W. Vandervorst, Outwitting the series resistance in scanning spreading resistance microscopy. Ultramicroscopy 161, 59–65 (2016)CrossRef A. Schulze, R. Cao, P. Eyben, T. Hantschel, W. Vandervorst, Outwitting the series resistance in scanning spreading resistance microscopy. Ultramicroscopy 161, 59–65 (2016)CrossRef
28.
go back to reference P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology 26, 355702 (2015)CrossRef P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology 26, 355702 (2015)CrossRef
29.
go back to reference R. Shao, S.V. Kalinin, D.A. Bonnell, Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869–1871 (2003)ADSCrossRef R. Shao, S.V. Kalinin, D.A. Bonnell, Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869–1871 (2003)ADSCrossRef
30.
32.
go back to reference M.P. Murrell et al., Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Appl. Phys. Lett. 62, 786 (1993)ADSCrossRef M.P. Murrell et al., Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Appl. Phys. Lett. 62, 786 (1993)ADSCrossRef
33.
go back to reference P. Güthner, K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992)ADSCrossRef P. Güthner, K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992)ADSCrossRef
34.
go back to reference C. Barth, C.R. Henry, Related content: Scanning force microscopy studies of domain structure in BaTiO3 single crystals (microscopy study) (1997) C. Barth, C.R. Henry, Related content: Scanning force microscopy studies of domain structure in BaTiO3 single crystals (microscopy study) (1997)
35.
go back to reference S. Jesse, S.V. Kalinin, Band excitation in scanning probe microscopy: sines of change. J. Phys. D Appl. Phys. 44, 464006 (2011)ADSCrossRef S. Jesse, S.V. Kalinin, Band excitation in scanning probe microscopy: sines of change. J. Phys. D Appl. Phys. 44, 464006 (2011)ADSCrossRef
36.
go back to reference S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi 212, 477–494 (2015)ADSCrossRef S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi 212, 477–494 (2015)ADSCrossRef
37.
go back to reference Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018)CrossRef Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018)CrossRef
38.
go back to reference U. Celano et al., Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)ADSCrossRef U. Celano et al., Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)ADSCrossRef
39.
go back to reference R.B. Dinwiddie, R.J. Pylkki, P.E. West, Thermal conductivity contrast imaging with a scanning thermal microscope. Therm. Conduct. 22, 668–677 (1994) R.B. Dinwiddie, R.J. Pylkki, P.E. West, Thermal conductivity contrast imaging with a scanning thermal microscope. Therm. Conduct. 22, 668–677 (1994)
40.
41.
go back to reference S.A. Mari et al., Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. 108, 20802–20807 (2011)ADSCrossRef S.A. Mari et al., Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. 108, 20802–20807 (2011)ADSCrossRef
42.
go back to reference S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017)ADSCrossRef S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017)ADSCrossRef
43.
go back to reference A.L. Weisenhorn, P. Maivald, H.-J. Butt, P.K. Hansma, Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992)ADSCrossRef A.L. Weisenhorn, P. Maivald, H.-J. Butt, P.K. Hansma, Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992)ADSCrossRef
44.
go back to reference E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM). Biophys. J. 49, 269–279 (1986)CrossRef E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM). Biophys. J. 49, 269–279 (1986)CrossRef
45.
go back to reference U. Dürig, D.W. Pohl, F. Rohner, Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986)ADSCrossRef U. Dürig, D.W. Pohl, F. Rohner, Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986)ADSCrossRef
46.
go back to reference N.F. van Hulst, F.B. Segerink, F. Achten, B. Bölger, Evanescent-field optical microscopy: effects of polarization, tip shape and radiative waves. Ultramicroscopy 42–44, 416–421 (1992)CrossRef N.F. van Hulst, F.B. Segerink, F. Achten, B. Bölger, Evanescent-field optical microscopy: effects of polarization, tip shape and radiative waves. Ultramicroscopy 42–44, 416–421 (1992)CrossRef
47.
go back to reference R.C. Reddick, R.J. Warmack, D.W. Chilcott, S.L. Sharp, T.L. Ferrell, Photon scanning tunneling microscopy. Rev. Sci. Instrum. 61, 3669–3677 (1990)ADSCrossRef R.C. Reddick, R.J. Warmack, D.W. Chilcott, S.L. Sharp, T.L. Ferrell, Photon scanning tunneling microscopy. Rev. Sci. Instrum. 61, 3669–3677 (1990)ADSCrossRef
48.
49.
go back to reference S. Zhu, G.Q. Lo, D.L. Kwong, Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express 20, 15232 (2012)ADSCrossRef S. Zhu, G.Q. Lo, D.L. Kwong, Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express 20, 15232 (2012)ADSCrossRef
50.
go back to reference L. Liu et al., Three-dimensional atomic force microscopy for sidewall imaging using torsional resonance mode. Scanning 2018, 1–8 (2018) L. Liu et al., Three-dimensional atomic force microscopy for sidewall imaging using torsional resonance mode. Scanning 2018, 1–8 (2018)
51.
go back to reference T.-G. Kim et al., In-line critical dimension and sidewall roughness metrology study for compound nanostructure process control by in-line 3D atomic force microscope. ECS Trans. 75, 761–767 (2016)CrossRef T.-G. Kim et al., In-line critical dimension and sidewall roughness metrology study for compound nanostructure process control by in-line 3D atomic force microscope. ECS Trans. 75, 761–767 (2016)CrossRef
52.
go back to reference Y. Liu et al., Tuning dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 10, 294–299 (2014)CrossRef Y. Liu et al., Tuning dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 10, 294–299 (2014)CrossRef
53.
go back to reference P. Roushan et al., Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009)ADSCrossRef P. Roushan et al., Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009)ADSCrossRef
55.
go back to reference P. Maletinsky et al., A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012)ADSCrossRef P. Maletinsky et al., A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012)ADSCrossRef
56.
go back to reference F. Zenhausern, Y. Martin, H.K. Wickramasinghe, Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution. Science (80) 269, 1083–1085 (1995)ADSCrossRef F. Zenhausern, Y. Martin, H.K. Wickramasinghe, Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution. Science (80) 269, 1083–1085 (1995)ADSCrossRef
57.
go back to reference F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994)ADSCrossRef F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994)ADSCrossRef
58.
go back to reference F. Long, B. Cao, A. Khanal, S. Fang, R. Shahbazian-Yassar, Modification of a single-molecule AFM probe with highly defined surface functionality. Beilstein J. Nanotechnol. 5, 2122–2128 (2014)CrossRef F. Long, B. Cao, A. Khanal, S. Fang, R. Shahbazian-Yassar, Modification of a single-molecule AFM probe with highly defined surface functionality. Beilstein J. Nanotechnol. 5, 2122–2128 (2014)CrossRef
59.
go back to reference T. Ando, High-speed atomic force microscopy. J. Electron. Microsc. (Tokyo) 62, 81–93 (2013)CrossRef T. Ando, High-speed atomic force microscopy. J. Electron. Microsc. (Tokyo) 62, 81–93 (2013)CrossRef
60.
go back to reference G.R. Heath, S. Scheuring, High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules. Nat. Commun. 9, 4983 (2018)ADSCrossRef G.R. Heath, S. Scheuring, High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules. Nat. Commun. 9, 4983 (2018)ADSCrossRef
62.
go back to reference X. Li et al., High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. Nat. Commun. 9, 2428 (2018)ADSCrossRef X. Li et al., High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. Nat. Commun. 9, 2428 (2018)ADSCrossRef
63.
go back to reference K.-H. Chung, Wear characteristics of atomic force microscopy tips: A reivew. Int. J. Precis. Eng. Manuf. 15, 2219–2230 (2014)CrossRef K.-H. Chung, Wear characteristics of atomic force microscopy tips: A reivew. Int. J. Precis. Eng. Manuf. 15, 2219–2230 (2014)CrossRef
64.
go back to reference D. Sarid, R. Coratger, F. Ajustron, J. Beauvillain, Scanning force microscopy—with applications to electric, magnetic and atomic forces. Microsc. Microanal. Microstruct. 2, 649 (1991)CrossRef D. Sarid, R. Coratger, F. Ajustron, J. Beauvillain, Scanning force microscopy—with applications to electric, magnetic and atomic forces. Microsc. Microanal. Microstruct. 2, 649 (1991)CrossRef
65.
go back to reference R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014)ADSCrossRef R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014)ADSCrossRef
66.
go back to reference D. Sarid, Tapping-mode scanning force microscopy: metallic tips and samples. Comput. Mater. Sci. 5 (1996)CrossRef D. Sarid, Tapping-mode scanning force microscopy: metallic tips and samples. Comput. Mater. Sci. 5 (1996)CrossRef
67.
go back to reference M. Stark, R.W. Stark, W.M. Heckl, R. Guckenberger, Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. 99, 8473–8478 (2002)ADSCrossRef M. Stark, R.W. Stark, W.M. Heckl, R. Guckenberger, Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. 99, 8473–8478 (2002)ADSCrossRef
68.
go back to reference T.J. Young et al., The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011)ADSCrossRef T.J. Young et al., The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011)ADSCrossRef
69.
go back to reference E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2003) E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2003)
71.
go back to reference J. Drelich, G.W. Tormoen, E.R. Beach, Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J. Colloid Interface Sci. 280, 484–497 (2004)ADSCrossRef J. Drelich, G.W. Tormoen, E.R. Beach, Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J. Colloid Interface Sci. 280, 484–497 (2004)ADSCrossRef
72.
go back to reference D.S. Grierson, E.E. Flater, R.W. Carpick, Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)CrossRef D.S. Grierson, E.E. Flater, R.W. Carpick, Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)CrossRef
73.
go back to reference U. Celano et al., Evaluation of the electrical contact area in contact-mode scanning probe microscopy. J. Appl. Phys. 117, 214305 (2015)ADSCrossRef U. Celano et al., Evaluation of the electrical contact area in contact-mode scanning probe microscopy. J. Appl. Phys. 117, 214305 (2015)ADSCrossRef
75.
go back to reference T. Hantschel et al., Conductive diamond tips with sub-nanometer electrical resolution for characterization of nanoelectronics device structures. Phys. Status Solidi 206, 2077–2081 (2009)ADSCrossRef T. Hantschel et al., Conductive diamond tips with sub-nanometer electrical resolution for characterization of nanoelectronics device structures. Phys. Status Solidi 206, 2077–2081 (2009)ADSCrossRef
77.
go back to reference M. Enachescu, D. Schleef, D. Ogletree, M. Salmeron, Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt(111). Phys. Rev. B 60, 16913–16919 (1999)ADSCrossRef M. Enachescu, D. Schleef, D. Ogletree, M. Salmeron, Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt(111). Phys. Rev. B 60, 16913–16919 (1999)ADSCrossRef
78.
go back to reference P. Eyben, T. Janssens, W. Vandervorst, Scanning spreading resistance microscopy (SSRM) 2d carrier profiling for ultra-shallow junction characterization in deep-submicron technologies. Mater. Sci. Eng., B 124–125, 45–53 (2005)CrossRef P. Eyben, T. Janssens, W. Vandervorst, Scanning spreading resistance microscopy (SSRM) 2d carrier profiling for ultra-shallow junction characterization in deep-submicron technologies. Mater. Sci. Eng., B 124–125, 45–53 (2005)CrossRef
79.
go back to reference K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009)CrossRef K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009)CrossRef
81.
go back to reference A. Gruverman, S.V. Kalinin, Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. Front. Ferroelectr. A Spec. Issue J. Mater. Sci. 1, 107–116 (2007)CrossRef A. Gruverman, S.V. Kalinin, Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. Front. Ferroelectr. A Spec. Issue J. Mater. Sci. 1, 107–116 (2007)CrossRef
82.
go back to reference A. Kholkin, S. Kalinin, A. Roelofs, A. Gruverman, Review of ferroelectric domain imaging by piezoresponse force microscopy. Scanning Probe Microsc. Electr. Electromech. Phenom. Nanoscale 1, 173–214 (2007) A. Kholkin, S. Kalinin, A. Roelofs, A. Gruverman, Review of ferroelectric domain imaging by piezoresponse force microscopy. Scanning Probe Microsc. Electr. Electromech. Phenom. Nanoscale 1, 173–214 (2007)
83.
go back to reference S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18 (2007)ADSCrossRef S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18 (2007)ADSCrossRef
84.
go back to reference S. Morita, F.J. Giessibl, E. Meyer, R. Wiesendanger, Noncontact Atomic Force Microscopy (2015) S. Morita, F.J. Giessibl, E. Meyer, R. Wiesendanger, Noncontact Atomic Force Microscopy (2015)
85.
go back to reference P.E. Hillner, S. Manne, A.J. Gratz, P.K. Hansma, AFM images of dissolution and growth on a calcite crystal. Ultramicroscopy 42–44, 1387–1393 (1992)CrossRef P.E. Hillner, S. Manne, A.J. Gratz, P.K. Hansma, AFM images of dissolution and growth on a calcite crystal. Ultramicroscopy 42–44, 1387–1393 (1992)CrossRef
86.
go back to reference L. Angeloni, D. Passeri, M. Reggente, D. Mantovani, M. Rossi, Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: Application to superparamagnetic nanoparticles. Sci. Rep. 6, 1–14 (2016)CrossRef L. Angeloni, D. Passeri, M. Reggente, D. Mantovani, M. Rossi, Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: Application to superparamagnetic nanoparticles. Sci. Rep. 6, 1–14 (2016)CrossRef
87.
go back to reference S. Gómez-Moñivas, L.S. Froufe-Pérez, A.J. Caamaño, J.J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples. Appl. Phys. Lett. 79, 4048 (2001)ADSCrossRef S. Gómez-Moñivas, L.S. Froufe-Pérez, A.J. Caamaño, J.J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples. Appl. Phys. Lett. 79, 4048 (2001)ADSCrossRef
88.
go back to reference L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nat. Mater. 11, 808–816 (2012)ADSCrossRef L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nat. Mater. 11, 808–816 (2012)ADSCrossRef
89.
go back to reference A.K. Henning et al., Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy. J. Appl. Phys. 77, 1888–1896 (1995)ADSCrossRef A.K. Henning et al., Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy. J. Appl. Phys. 77, 1888–1896 (1995)ADSCrossRef
90.
go back to reference C. Maragliano, D. Heskes, M. Stefancich, M. Chiesa, T. Souier, Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution. Nanotechnology 24, 225703 (2013)ADSCrossRef C. Maragliano, D. Heskes, M. Stefancich, M. Chiesa, T. Souier, Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution. Nanotechnology 24, 225703 (2013)ADSCrossRef
91.
go back to reference D.A. Bonnell, J. Garra, Scanning probe microscopy of oxide surfaces: atomic structure and properties. Reports Prog. Phys. 71, 044501 (2008)ADSCrossRef D.A. Bonnell, J. Garra, Scanning probe microscopy of oxide surfaces: atomic structure and properties. Reports Prog. Phys. 71, 044501 (2008)ADSCrossRef
92.
go back to reference A.J. Weymouth, T. Wutscher, J. Welker, T. Hofmann, F.J. Giessibl, Phantom force induced by tunneling current: a characterization on Si(111). Phys. Rev. Lett. 106, 226801 (2011)ADSCrossRef A.J. Weymouth, T. Wutscher, J. Welker, T. Hofmann, F.J. Giessibl, Phantom force induced by tunneling current: a characterization on Si(111). Phys. Rev. Lett. 106, 226801 (2011)ADSCrossRef
93.
go back to reference G.E. Moore, Cramming more components onto integrated circuits. Reprinted from Electronics 38(8), 114 ff. (1965, Apr 19). IEEE Solid-State Circuits Soc. Newsl. 11, 33–35 (2006) G.E. Moore, Cramming more components onto integrated circuits. Reprinted from Electronics 38(8), 114 ff. (1965, Apr 19). IEEE Solid-State Circuits Soc. Newsl. 11, 33–35 (2006)
94.
go back to reference S. Woo et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)ADSCrossRef S. Woo et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)ADSCrossRef
95.
go back to reference N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013)ADSCrossRef N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013)ADSCrossRef
96.
go back to reference A. Hrabec et al., Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 1–6 (2017)CrossRef A. Hrabec et al., Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 1–6 (2017)CrossRef
98.
go back to reference C. Musumeci, Advanced scanning probe microscopy of graphene and other 2D materials. Crystals 7, 216 (2017)CrossRef C. Musumeci, Advanced scanning probe microscopy of graphene and other 2D materials. Crystals 7, 216 (2017)CrossRef
99.
go back to reference G.X. Ni et al., Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018)ADSCrossRef G.X. Ni et al., Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018)ADSCrossRef
100.
go back to reference G. Scappucci et al., A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Lett. 11, 2272–2279 (2011)ADSCrossRef G. Scappucci et al., A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Lett. 11, 2272–2279 (2011)ADSCrossRef
101.
go back to reference L. Oberbeck et al., Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy. Appl. Phys. Lett. 104, 1–6 (2014)CrossRef L. Oberbeck et al., Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy. Appl. Phys. Lett. 104, 1–6 (2014)CrossRef
102.
go back to reference R. Vrijen et al., Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)ADSCrossRef R. Vrijen et al., Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)ADSCrossRef
103.
go back to reference E. Bussmann et al., Scanning capacitance microscopy registration of buried atomic-precision donor devices. Nanotechnology 26, 085701 (2015)ADSCrossRef E. Bussmann et al., Scanning capacitance microscopy registration of buried atomic-precision donor devices. Nanotechnology 26, 085701 (2015)ADSCrossRef
104.
go back to reference A. Dazzi, R. Prazeres, F. Glotin, J.M. Ortega, Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388 (2005)ADSCrossRef A. Dazzi, R. Prazeres, F. Glotin, J.M. Ortega, Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388 (2005)ADSCrossRef
105.
go back to reference C. Chen, N. Hayazawa, S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 1–5 (2014) C. Chen, N. Hayazawa, S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 1–5 (2014)
106.
go back to reference A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of nanodevices. Nano Lett. 8, 3766–3770 (2008)ADSCrossRef A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of nanodevices. Nano Lett. 8, 3766–3770 (2008)ADSCrossRef
107.
go back to reference N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)ADSCrossRef N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)ADSCrossRef
108.
go back to reference A. Soudi, R.D. Dawson, Y. Gu, Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 5, 255–262 (2011)CrossRef A. Soudi, R.D. Dawson, Y. Gu, Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 5, 255–262 (2011)CrossRef
109.
go back to reference E. Yalon et al., Spatially resolved thermometry of resistive memory devices. Sci. Rep. 7, 15360 (2017)ADSCrossRef E. Yalon et al., Spatially resolved thermometry of resistive memory devices. Sci. Rep. 7, 15360 (2017)ADSCrossRef
110.
go back to reference T. Ando, High-speed atomic force microscopy and its future prospects. Biophys. Rev. 10, 285–292 (2018)CrossRef T. Ando, High-speed atomic force microscopy and its future prospects. Biophys. Rev. 10, 285–292 (2018)CrossRef
111.
go back to reference F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012)ADSCrossRef F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012)ADSCrossRef
112.
go back to reference A. Ulčinas, Vaitekonis, Rotational scanning atomic force microscopy. Nanotechnology 28 (2017)CrossRef A. Ulčinas, Vaitekonis, Rotational scanning atomic force microscopy. Nanotechnology 28 (2017)CrossRef
113.
go back to reference R. Garcia, E.T. Herruzo, The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012)ADSCrossRef R. Garcia, E.T. Herruzo, The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012)ADSCrossRef
114.
go back to reference U. Celano et al., Mesoscopic physical removal of material using sliding nano-diamond contacts. Sci. Rep. 8, 2994 (2018)ADSCrossRef U. Celano et al., Mesoscopic physical removal of material using sliding nano-diamond contacts. Sci. Rep. 8, 2994 (2018)ADSCrossRef
Metadata
Title
The Atomic Force Microscopy for Nanoelectronics
Author
Umberto Celano
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15612-1_1