Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

03-03-2016

Continuum model of the potential of charge carriers in a bent piezoelectric ZnO nanowire: analytic and numerical study

Authors: Seong Min Kim, Jaewook Ha, Jin-baek Kim

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The piezoelectric potential of a slightly n-doped ZnO nanowire is analytically and numerically solved. We approximated the dopant concentration \((N_d^{+})\) to shift slightly from the intrinsic level toward an n-typed region by increasing the donor concentration. Correspondingly, the electron density is also approximated. The analytic solution of the continuum model indicates that the derived solution is dependent on the lateral force, Bessel function, and Meijer G-function. As per the potential of the nanowire’s cross section, the potential in the tensile side is considered to have screening effects, and the polarity of the potential between the tensile and the compressive is antisymmetric such that the compressive is negative and the tensile is positive. The diameter in the ZnO nanowire used in the model is 200 nm, and the lateral force used is approximately \(80 \times 10^{-5}\) N. Although the resulting piezoelectric potential of the NW that is derived from the simplified coefficient form is not accurately estimated, it shows a trend with the scaled values. The difference in the potential between the maximum tensile and compressive value is approximately one order that is consistent with others (Wang and Song, Science 312:242–246, 2006;Gao and Wang, Nano Lett 9:1103–1110, 2009).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee, S.S., White, R.M.: Piezoelectric cantilever acoustic transducer. J. Micromech. Microeng. 8, 230–238 (1998)CrossRef Lee, S.S., White, R.M.: Piezoelectric cantilever acoustic transducer. J. Micromech. Microeng. 8, 230–238 (1998)CrossRef
2.
go back to reference Du, X.Y., Fu, Y.Q., Luo, J.K., Flewitt, A.J., Milne, W.I.: Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. J. Appl. Phys. 105, 1–7 (2009) Du, X.Y., Fu, Y.Q., Luo, J.K., Flewitt, A.J., Milne, W.I.: Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. J. Appl. Phys. 105, 1–7 (2009)
3.
go back to reference Miko, E., Remco, W.: Mechanical Microsensors. Microtechnology and MEMS. Springer, Heidelberg (2001) Miko, E., Remco, W.: Mechanical Microsensors. Microtechnology and MEMS. Springer, Heidelberg (2001)
4.
go back to reference Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 312, 242–246 (2006)CrossRef Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 312, 242–246 (2006)CrossRef
5.
go back to reference Gao, P.X., Song, J., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)CrossRef Gao, P.X., Song, J., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)CrossRef
6.
go back to reference Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)CrossRef Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)CrossRef
7.
go back to reference Liu, J., Fei, P., Song, J., Wang, X., Lao, C., Tummala, R., Wang, Z.L.: Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett. 8, 328–332 (2007)CrossRef Liu, J., Fei, P., Song, J., Wang, X., Lao, C., Tummala, R., Wang, Z.L.: Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett. 8, 328–332 (2007)CrossRef
8.
go back to reference Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef
9.
go back to reference Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef
10.
go back to reference Gorelkinskii, Y., Watkins, G.: Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: study by optical detection of electron paramagnetic resonance. Phys. Rev. B 69, 115212 (2004)CrossRef Gorelkinskii, Y., Watkins, G.: Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: study by optical detection of electron paramagnetic resonance. Phys. Rev. B 69, 115212 (2004)CrossRef
11.
go back to reference Look, D.C., Farlow, G.C., Reunchan, P., Limpijumnong, S., Zhang, S.B., Nordlund, K.: vidence for native-defect donors in \(n\)-type ZnO. Phys. Rev. Lett. 95, 225502 (2005)CrossRef Look, D.C., Farlow, G.C., Reunchan, P., Limpijumnong, S., Zhang, S.B., Nordlund, K.: vidence for native-defect donors in \(n\)-type ZnO. Phys. Rev. Lett. 95, 225502 (2005)CrossRef
12.
go back to reference Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)CrossRef Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)CrossRef
13.
go back to reference Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilao, R.C., Duarte, J.P., De Campos, N.A., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001)CrossRef Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilao, R.C., Duarte, J.P., De Campos, N.A., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001)CrossRef
14.
go back to reference Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., Baranov, P.G.: Hydrogen: a relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002)CrossRef Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., Baranov, P.G.: Hydrogen: a relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002)CrossRef
15.
go back to reference Shimomura, K., Nishiyama, K., Kadono, R.: Electronic structure of the muonium center as a shallow donor in ZnO. Phys. Rev. Lett. 89, 255505 (2002)CrossRef Shimomura, K., Nishiyama, K., Kadono, R.: Electronic structure of the muonium center as a shallow donor in ZnO. Phys. Rev. Lett. 89, 255505 (2002)CrossRef
16.
go back to reference Shi, G.A., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005)CrossRef Shi, G.A., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005)CrossRef
17.
go back to reference Shao, Z.Z., Wen, L.Y., Wu, D.M., Wang, X.F., Zhang, X.A., Chang, S.L.: A continuum model of piezoelectric potential generated in a bent ZnO nanorod. J. Phys. D 43, 245403 (2010)CrossRef Shao, Z.Z., Wen, L.Y., Wu, D.M., Wang, X.F., Zhang, X.A., Chang, S.L.: A continuum model of piezoelectric potential generated in a bent ZnO nanorod. J. Phys. D 43, 245403 (2010)CrossRef
18.
go back to reference Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7, 2499–2505 (2007)CrossRef Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7, 2499–2505 (2007)CrossRef
Metadata
Title
Continuum model of the potential of charge carriers in a bent piezoelectric ZnO nanowire: analytic and numerical study
Authors
Seong Min Kim
Jaewook Ha
Jin-baek Kim
Publication date
03-03-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0810-9

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue