Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids

Authors : Helmut J. Böhm, Heinz E. Pettermann, Sergio Nogales

Published in: Heat Transfer in Multi-Phase Materials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

General features of homogenization and localization in studying the conduction behavior of inhomogeneous materials are introduced and two groups of methods for solving such problems are presented. First, mean field and bounding approaches are discussed and comparisons between the predictions of relevant methods are given. Next, modeling approaches to studying discrete microstructures are covered, the main emphasis being put on periodic homogenization and windowing procedures. Finally, an application of the methods to diamond particle reinforced aluminum is presented, in which interfacial effects play an important role.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)CrossRef Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)CrossRef
2.
go back to reference Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)CrossRef Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)CrossRef
3.
go back to reference Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)CrossRef Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)CrossRef
4.
go back to reference Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)CrossRef Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)CrossRef
6.
go back to reference Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)CrossRef Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)CrossRef
7.
go back to reference Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)CrossRef Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)CrossRef
8.
go back to reference Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)CrossRef Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)CrossRef
9.
go back to reference Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)CrossRef Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)CrossRef
10.
go back to reference Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006) Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006)
11.
go back to reference Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004) Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004)
12.
go back to reference Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)CrossRef Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)CrossRef
13.
go back to reference Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)CrossRef Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)CrossRef
14.
go back to reference Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)CrossRef Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)CrossRef
15.
go back to reference Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)CrossRef Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)CrossRef
16.
go back to reference Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)CrossRef Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)CrossRef
17.
go back to reference Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi:10.1007/8611_2010_6 Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi:10.​1007/​8611_​2010_​6
18.
go back to reference Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)CrossRef Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)CrossRef
19.
go back to reference Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)CrossRef Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)CrossRef
20.
go back to reference Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)CrossRef Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)CrossRef
21.
go back to reference Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)CrossRef Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)CrossRef
22.
go back to reference Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)CrossRef Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)CrossRef
23.
go back to reference Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)CrossRef Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)CrossRef
24.
go back to reference Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)CrossRef Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)CrossRef
25.
go back to reference Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)CrossRef Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)CrossRef
26.
go back to reference Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)CrossRef Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)CrossRef
27.
go back to reference Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)CrossRef Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)CrossRef
28.
go back to reference Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)CrossRef Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)CrossRef
29.
go back to reference Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)CrossRef Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)CrossRef
30.
go back to reference Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)CrossRef Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)CrossRef
31.
go back to reference Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)CrossRef Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)CrossRef
32.
go back to reference Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)CrossRef Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)CrossRef
33.
go back to reference Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)CrossRef Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)CrossRef
34.
go back to reference Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)CrossRef Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)CrossRef
35.
go back to reference Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000) Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000)
36.
go back to reference Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002) Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002)
37.
go back to reference Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)CrossRef Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)CrossRef
38.
go back to reference Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi:10.1007/8611_2010_10 Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi:10.​1007/​8611_​2010_​10
39.
go back to reference Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873) Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873)
40.
go back to reference Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)CrossRef Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)CrossRef
41.
go back to reference Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)CrossRef Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)CrossRef
42.
go back to reference Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef
43.
go back to reference Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)CrossRef Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)CrossRef
44.
go back to reference Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008) Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008)
45.
go back to reference Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)CrossRef Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)CrossRef
46.
go back to reference Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957) Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957)
47.
go back to reference Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)CrossRef Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)CrossRef
48.
go back to reference Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)CrossRef Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)CrossRef
49.
go back to reference Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986) Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986)
50.
go back to reference Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)CrossRef Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)CrossRef
51.
go back to reference Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)CrossRef Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)CrossRef
52.
go back to reference Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)CrossRef Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)CrossRef
53.
go back to reference Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)CrossRef Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)CrossRef
54.
go back to reference Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)CrossRef Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)CrossRef
55.
go back to reference Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004) Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004)
56.
go back to reference Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)CrossRef Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)CrossRef
57.
go back to reference Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996) Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996)
58.
go back to reference Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)CrossRef Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)CrossRef
59.
go back to reference Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002) Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002)
60.
go back to reference Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)CrossRef Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)CrossRef
61.
go back to reference Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)CrossRef Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)CrossRef
62.
go back to reference Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912) Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912)
63.
go back to reference Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)CrossRef Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)CrossRef
Metadata
Title
Continuum Modeling of Diffusive Transport in Inhomogeneous Solids
Authors
Helmut J. Böhm
Heinz E. Pettermann
Sergio Nogales
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2010_43

Premium Partners