Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids

verfasst von : Helmut J. Böhm, Heinz E. Pettermann, Sergio Nogales

Erschienen in: Heat Transfer in Multi-Phase Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

General features of homogenization and localization in studying the conduction behavior of inhomogeneous materials are introduced and two groups of methods for solving such problems are presented. First, mean field and bounding approaches are discussed and comparisons between the predictions of relevant methods are given. Next, modeling approaches to studying discrete microstructures are covered, the main emphasis being put on periodic homogenization and windowing procedures. Finally, an application of the methods to diamond particle reinforced aluminum is presented, in which interfacial effects play an important role.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)CrossRef Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)CrossRef
2.
Zurück zum Zitat Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)CrossRef Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)CrossRef
3.
Zurück zum Zitat Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)CrossRef Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)CrossRef
4.
Zurück zum Zitat Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)CrossRef Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)CrossRef
6.
Zurück zum Zitat Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)CrossRef Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)CrossRef
7.
Zurück zum Zitat Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)CrossRef Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)CrossRef
8.
Zurück zum Zitat Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)CrossRef Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)CrossRef
9.
Zurück zum Zitat Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)CrossRef Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)CrossRef
10.
Zurück zum Zitat Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006) Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006)
11.
Zurück zum Zitat Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004) Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004)
12.
Zurück zum Zitat Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)CrossRef Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)CrossRef
13.
Zurück zum Zitat Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)CrossRef Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)CrossRef
14.
Zurück zum Zitat Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)CrossRef Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)CrossRef
15.
Zurück zum Zitat Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)CrossRef Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)CrossRef
16.
Zurück zum Zitat Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)CrossRef Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)CrossRef
17.
Zurück zum Zitat Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi:10.1007/8611_2010_6 Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi:10.​1007/​8611_​2010_​6
18.
Zurück zum Zitat Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)CrossRef Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)CrossRef
19.
Zurück zum Zitat Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)CrossRef Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)CrossRef
20.
Zurück zum Zitat Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)CrossRef Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)CrossRef
21.
Zurück zum Zitat Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)CrossRef Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)CrossRef
22.
Zurück zum Zitat Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)CrossRef Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)CrossRef
23.
Zurück zum Zitat Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)CrossRef Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)CrossRef
24.
Zurück zum Zitat Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)CrossRef Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)CrossRef
25.
Zurück zum Zitat Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)CrossRef Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)CrossRef
26.
Zurück zum Zitat Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)CrossRef Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)CrossRef
27.
Zurück zum Zitat Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)CrossRef Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)CrossRef
28.
Zurück zum Zitat Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)CrossRef Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)CrossRef
29.
Zurück zum Zitat Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)CrossRef Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)CrossRef
30.
Zurück zum Zitat Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)CrossRef Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)CrossRef
31.
Zurück zum Zitat Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)CrossRef Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)CrossRef
32.
Zurück zum Zitat Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)CrossRef Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)CrossRef
33.
Zurück zum Zitat Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)CrossRef Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)CrossRef
34.
Zurück zum Zitat Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)CrossRef Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)CrossRef
35.
Zurück zum Zitat Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000) Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000)
36.
Zurück zum Zitat Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002) Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002)
37.
Zurück zum Zitat Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)CrossRef Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)CrossRef
38.
Zurück zum Zitat Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi:10.1007/8611_2010_10 Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi:10.​1007/​8611_​2010_​10
39.
Zurück zum Zitat Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873) Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873)
40.
Zurück zum Zitat Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)CrossRef Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)CrossRef
41.
Zurück zum Zitat Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)CrossRef Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)CrossRef
42.
Zurück zum Zitat Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef
43.
Zurück zum Zitat Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)CrossRef Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)CrossRef
44.
Zurück zum Zitat Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008) Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008)
45.
Zurück zum Zitat Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)CrossRef Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)CrossRef
46.
Zurück zum Zitat Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957) Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957)
47.
Zurück zum Zitat Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)CrossRef Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)CrossRef
48.
Zurück zum Zitat Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)CrossRef Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)CrossRef
49.
Zurück zum Zitat Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986) Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986)
50.
Zurück zum Zitat Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)CrossRef Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)CrossRef
51.
Zurück zum Zitat Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)CrossRef Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)CrossRef
52.
Zurück zum Zitat Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)CrossRef Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)CrossRef
53.
Zurück zum Zitat Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)CrossRef Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)CrossRef
54.
Zurück zum Zitat Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)CrossRef Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)CrossRef
55.
Zurück zum Zitat Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004) Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004)
56.
Zurück zum Zitat Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)CrossRef Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)CrossRef
57.
Zurück zum Zitat Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996) Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996)
58.
Zurück zum Zitat Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)CrossRef Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)CrossRef
59.
Zurück zum Zitat Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002) Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002)
60.
Zurück zum Zitat Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)CrossRef Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)CrossRef
61.
Zurück zum Zitat Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)CrossRef Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)CrossRef
62.
Zurück zum Zitat Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912) Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912)
63.
Zurück zum Zitat Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)CrossRef Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)CrossRef
Metadaten
Titel
Continuum Modeling of Diffusive Transport in Inhomogeneous Solids
verfasst von
Helmut J. Böhm
Heinz E. Pettermann
Sergio Nogales
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2010_43

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.