Skip to main content

2011 | OriginalPaper | Buchkapitel

Heat Conduction in Two-Phase Composite Materials with Three-Dimensional Microstructures and Interfacial Thermal Resistance

verfasst von : Carlos Frederico Matt, Manuel Ernani Cruz

Erschienen in: Heat Transfer in Multi-Phase Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goals envisioned for the current chapter are threefold. First, it gives a general overview of heat conduction in two-phase composite materials with three dimensional microstructures and interfacial thermal resistance. Second, it describes the application of homogenization theory to the multiscale heat conduction problem in the composite medium in order to derive the boundary-value problem defined on a representative volume element of the composite microstructure (the cell problem) and an expression for the composite effective thermal conductivity. Third, it describes a finite-element-based computational scheme to calculate the effective thermal conductivity of composite materials with general 3-D microstructures and interfacial thermal resistance. Numerical results for the effective conductivity are presented and, when possible, compared with available analytical predictions. The numerical results reported here confirm that computational approaches are a helpful tool for understanding the complex macroscopic thermal behavior of composite materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Auriault, J.L., Ene, H.I.: Macroscopic modelling of heat transfer in composites with inter-facial thermal barrier. Int. J. Heat Mass Transf. 37, 2885–2892 (1994)CrossRef Auriault, J.L., Ene, H.I.: Macroscopic modelling of heat transfer in composites with inter-facial thermal barrier. Int. J. Heat Mass Transf. 37, 2885–2892 (1994)CrossRef
2.
Zurück zum Zitat Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355, 313–333 (1977)CrossRef Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355, 313–333 (1977)CrossRef
3.
Zurück zum Zitat Bathe, K.J.: Finite Element Procedures in Engineering Analysis, 1st edn. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1982). Chaps. 1, 3, 7 Bathe, K.J.: Finite Element Procedures in Engineering Analysis, 1st edn. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1982). Chaps. 1, 3, 7
4.
Zurück zum Zitat Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Asymptotic Analysis for Periodic Structures, 1st edn. North-Holland Publishing Co., Amsterdam (1978). Chaps. 1–2 Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Asymptotic Analysis for Periodic Structures, 1st edn. North-Holland Publishing Co., Amsterdam (1978). Chaps. 1–2
5.
Zurück zum Zitat Benveniste, Y.: Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)CrossRef Benveniste, Y.: Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)CrossRef
6.
Zurück zum Zitat Cheng, H., Torquato, S.: Effective conductivity of periodic arrays of spheres with interfacial resistance. Proc. R. Soc. Lond. A 453, 145–161 (1997)CrossRef Cheng, H., Torquato, S.: Effective conductivity of periodic arrays of spheres with interfacial resistance. Proc. R. Soc. Lond. A 453, 145–161 (1997)CrossRef
7.
Zurück zum Zitat Cruz, M.E.: Computational approaches for heat conduction in composite materials. In: Esteve, Y.V., Carlomagno, G.M., Brebbia, C.A. (eds.) Computational Methods and Experimental Measurements X, pp. 657–668. WIT Press, Southampton, UK (2001) Cruz, M.E.: Computational approaches for heat conduction in composite materials. In: Esteve, Y.V., Carlomagno, G.M., Brebbia, C.A. (eds.) Computational Methods and Experimental Measurements X, pp. 657–668. WIT Press, Southampton, UK (2001)
8.
Zurück zum Zitat Dunn, M.L., Taya, M., Hatta, H., Takei, T., Nakajima, Y.: Thermal conductivity of hybrid short fiber composites. J. Compos. Mater. 27, 1493–1519 (1993)CrossRef Dunn, M.L., Taya, M., Hatta, H., Takei, T., Nakajima, Y.: Thermal conductivity of hybrid short fiber composites. J. Compos. Mater. 27, 1493–1519 (1993)CrossRef
9.
Zurück zum Zitat Duschlbauer, D., Böhm, H.J., Pettermann, H.E.: Numerical simulation of thermal conductivity of MMCs: effect of thermal interface resistance. Mater. Sci. Technol. 19, 1107–1114 (2003)CrossRef Duschlbauer, D., Böhm, H.J., Pettermann, H.E.: Numerical simulation of thermal conductivity of MMCs: effect of thermal interface resistance. Mater. Sci. Technol. 19, 1107–1114 (2003)CrossRef
10.
Zurück zum Zitat Duschlbauer, D., Pettermann, H.E., Böhm, H.J.: Heat conduction of a spheroidal inhomo-geneity with imperfectly bonded interface. J. Appl. Phys. 94(3), 1539–1549 (2003)CrossRef Duschlbauer, D., Pettermann, H.E., Böhm, H.J.: Heat conduction of a spheroidal inhomo-geneity with imperfectly bonded interface. J. Appl. Phys. 94(3), 1539–1549 (2003)CrossRef
11.
Zurück zum Zitat Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallica Mater. 40, 123–129 (1992)CrossRef Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallica Mater. 40, 123–129 (1992)CrossRef
12.
Zurück zum Zitat Furmañski, P.: Influence of different parameters on the effective thermal conductivity of short-fiber composites. J. Compos. Mater. 4, 349–362 (1991) Furmañski, P.: Influence of different parameters on the effective thermal conductivity of short-fiber composites. J. Compos. Mater. 4, 349–362 (1991)
13.
Zurück zum Zitat Furmañski, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl. Mech. Rev. 50, 327–356 (1997)CrossRef Furmañski, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl. Mech. Rev. 50, 327–356 (1997)CrossRef
14.
Zurück zum Zitat Garnier, B., Dupuis, T., Gilles, J., Bardon, J.P., Danes, F.: Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using a semi-intrinsic thermocouple. In: Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, pp. 9–14 (2002) Garnier, B., Dupuis, T., Gilles, J., Bardon, J.P., Danes, F.: Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using a semi-intrinsic thermocouple. In: Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, pp. 9–14 (2002)
15.
Zurück zum Zitat Hasselman, D.P.H., Johnson, L.F.: Effective thermal conductivity of composites with inter-facial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)CrossRef Hasselman, D.P.H., Johnson, L.F.: Effective thermal conductivity of composites with inter-facial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)CrossRef
16.
Zurück zum Zitat Hasselman, D.P.H., Johnson, L.F., Syed, R., Taylor, M.P., Chyung, K.: Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. J. Mater. Sci. 22, 701–709 (1987)CrossRef Hasselman, D.P.H., Johnson, L.F., Syed, R., Taylor, M.P., Chyung, K.: Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. J. Mater. Sci. 22, 701–709 (1987)CrossRef
17.
Zurück zum Zitat Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)CrossRef Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)CrossRef
18.
Zurück zum Zitat Jiajun, W., Su, Y.X.: Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AIN/PI composites. Compos. Sci. Technol. 64, 1623–1628 (2004)CrossRef Jiajun, W., Su, Y.X.: Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AIN/PI composites. Compos. Sci. Technol. 64, 1623–1628 (2004)CrossRef
19.
Zurück zum Zitat Kumar, S., Murthy, J.Y.: A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. Numer. Heat Transf. B Fund. 47, 555–572 (2005)CrossRef Kumar, S., Murthy, J.Y.: A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. Numer. Heat Transf. B Fund. 47, 555–572 (2005)CrossRef
20.
Zurück zum Zitat Matt, C.F., Cruz, M.E.: Calculation of the effective conductivity of ordered short-fiber composites. In: Proceedings of the 35th AIAA Thermophysics Conference, Anaheim, California, Paper AIAA 2001–2968 (2001) Matt, C.F., Cruz, M.E.: Calculation of the effective conductivity of ordered short-fiber composites. In: Proceedings of the 35th AIAA Thermophysics Conference, Anaheim, California, Paper AIAA 2001–2968 (2001)
21.
Zurück zum Zitat Matt, C.F., Cruz, M.E.: Application of a multiscale finite-element approach to calculate the effective conductivity of particulate media. Comput. Appl. Math. 21(2), 429–460 (2002) Matt, C.F., Cruz, M.E.: Application of a multiscale finite-element approach to calculate the effective conductivity of particulate media. Comput. Appl. Math. 21(2), 429–460 (2002)
22.
Zurück zum Zitat Matt, C.F., Cruz, M.E.: Enhancement of the thermal conductivity of composites reinforced with anisotropic short fibers. J. Enhanced Heat Transf. 13, 1–22 (2006)CrossRef Matt, C.F., Cruz, M.E.: Enhancement of the thermal conductivity of composites reinforced with anisotropic short fibers. J. Enhanced Heat Transf. 13, 1–22 (2006)CrossRef
23.
Zurück zum Zitat Matt, C.F., Cruz, M.E.: Numerical prediction of the effective thermal conductivity of composite materials. In: Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, California, Paper AIAA 2006–54155 (2006) Matt, C.F., Cruz, M.E.: Numerical prediction of the effective thermal conductivity of composite materials. In: Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, California, Paper AIAA 2006–54155 (2006)
24.
Zurück zum Zitat Matt, C.F., Cruz, M.E.: Effective thermal conductivity of composite materials with 3-d microstructures and interfacial thermal resistance. Numer. Heat Transf. Appl. A 53, 577–604 (2008)CrossRef Matt, C.F., Cruz, M.E.: Effective thermal conductivity of composite materials with 3-d microstructures and interfacial thermal resistance. Numer. Heat Transf. Appl. A 53, 577–604 (2008)CrossRef
25.
Zurück zum Zitat McKenzie, D.R., McPhedran, R.C., Derrick, G.H.: The conductivity of lattices of spheres II. The body centred and face centred cubic lattices. Proc. R. Soc. Lond. A 362, 211–232 (1978)CrossRef McKenzie, D.R., McPhedran, R.C., Derrick, G.H.: The conductivity of lattices of spheres II. The body centred and face centred cubic lattices. Proc. R. Soc. Lond. A 362, 211–232 (1978)CrossRef
26.
Zurück zum Zitat McPhedran, R.C., McKenzie, D.R.: The conductivity of lattices of spheres I. The simple cubic lattice. Proc. R. Soc. Lond. A 359, 45–63 (1978)CrossRef McPhedran, R.C., McKenzie, D.R.: The conductivity of lattices of spheres I. The simple cubic lattice. Proc. R. Soc. Lond. A 359, 45–63 (1978)CrossRef
27.
Zurück zum Zitat Milton, G.W.: The Theory of Composites, 1st edn. Cambridge University Press, Cambridge (2002). Chaps. 2, 7CrossRef Milton, G.W.: The Theory of Composites, 1st edn. Cambridge University Press, Cambridge (2002). Chaps. 2, 7CrossRef
28.
Zurück zum Zitat Mirmira, S.R., Fletcher, L.S.: Comparative study of thermal conductivity of graphite fiber organic matrix composites. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, California, Paper AJTE99-6439 (1999) Mirmira, S.R., Fletcher, L.S.: Comparative study of thermal conductivity of graphite fiber organic matrix composites. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, California, Paper AJTE99-6439 (1999)
29.
Zurück zum Zitat Nomura, S., Chou, T.W.: Bounds of effective thermal conductivity of short-fiber composites. J. Compos. Mater. 14, 120–129 (1980)CrossRef Nomura, S., Chou, T.W.: Bounds of effective thermal conductivity of short-fiber composites. J. Compos. Mater. 14, 120–129 (1980)CrossRef
30.
Zurück zum Zitat Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)CrossRef Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)CrossRef
31.
Zurück zum Zitat Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd edn. CRC Press LLC, Boca Raton (2001). Chaps. 1–3 Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd edn. CRC Press LLC, Boca Raton (2001). Chaps. 1–3
32.
Zurück zum Zitat Rocha, R.P.A., Cruz, M.E.: Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer. Heat Transf. A Appl. 39, 179–203 (2001)CrossRef Rocha, R.P.A., Cruz, M.E.: Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer. Heat Transf. A Appl. 39, 179–203 (2001)CrossRef
33.
Zurück zum Zitat Rolfes, R., Hammerschmidt, U.: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae. Compos. Sci. Technol. 54, 45–54 (1995)CrossRef Rolfes, R., Hammerschmidt, U.: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae. Compos. Sci. Technol. 54, 45–54 (1995)CrossRef
34.
Zurück zum Zitat Sangani, A.S., Acrivos, A.: The effective conductivity of a periodic array of spheres. Proc. R. Soc. Lond. A 386, 263–275 (1983)CrossRef Sangani, A.S., Acrivos, A.: The effective conductivity of a periodic array of spheres. Proc. R. Soc. Lond. A 386, 263–275 (1983)CrossRef
35.
Zurück zum Zitat Schöberl, J.: NETGEN – 4.4, User’s Manual. Numerical and Symbolic Scientific Computing, Institute of Mathematics, Johannes Kepler Universität Linz, Austria (2001) Schöberl, J.: NETGEN – 4.4, User’s Manual. Numerical and Symbolic Scientific Computing, Institute of Mathematics, Johannes Kepler Universität Linz, Austria (2001)
36.
Zurück zum Zitat Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate filled composites II: multi-reinforcing phases (hybrid composites). Mater. Sci. Eng. A 131, 145–152 (1991)CrossRef Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate filled composites II: multi-reinforcing phases (hybrid composites). Mater. Sci. Eng. A 131, 145–152 (1991)CrossRef
37.
Zurück zum Zitat Torquato, S.: Random Heterogeneous Materials, Microstructure and Macroscopic Properties, 1st edn. Springer, New York (2002). Chaps. 1, 2, 5–7 Torquato, S.: Random Heterogeneous Materials, Microstructure and Macroscopic Properties, 1st edn. Springer, New York (2002). Chaps. 1, 2, 5–7
38.
Zurück zum Zitat Yoshida, K., Morigami, H.: Thermal properties of diamond/copper composite material. Microelectron. Reliab. 44, 303–308 (2004)CrossRef Yoshida, K., Morigami, H.: Thermal properties of diamond/copper composite material. Microelectron. Reliab. 44, 303–308 (2004)CrossRef
Metadaten
Titel
Heat Conduction in Two-Phase Composite Materials with Three-Dimensional Microstructures and Interfacial Thermal Resistance
verfasst von
Carlos Frederico Matt
Manuel Ernani Cruz
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2010_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.